PROBLEM SESSION

DESCENT TECHNIQUES IN MODULAR

 REPRESENTATION THEORYPAUL BALMER

3. LECTURE

Problem 3.1. Prove the Beck-Chevally condition for the functor $\underline{\mathcal{C}}:=$ Rep: $(G \text {-Set })^{\text {op }} \rightarrow$ Add from G-sets to additive categories, i.e., prove:
For every pullback square in G-Set (as in the commutative square on the left hand side)

the composite of natural transformations

$$
\beta^{*} \alpha_{*} \xrightarrow{\eta \beta^{*} \alpha_{*}} \alpha_{*}^{\prime} \alpha^{\prime *} \beta^{*} \alpha_{*}^{\beta \alpha^{\prime}=\alpha \beta^{\prime}} \alpha_{*}^{\prime} \beta^{\prime *} \alpha^{*} \alpha_{*} \xrightarrow{\alpha_{*}^{\prime} \beta^{\prime *} \varepsilon} \alpha_{*}^{\prime} \beta^{\prime *}
$$

(as obtained by the "pasting" on the right hand side) is an isomorphism of functors $\underline{\mathcal{C}}\left(X^{\prime}\right) \rightarrow \underline{\mathcal{C}}\left(Y^{\prime}\right)$.

Problem 3.2 (Benabou-Roubaud Theorem). Let \mathcal{G} be a site with pullbacks and let $\underline{\mathcal{C}}: \mathcal{G}^{\mathrm{op}} \rightarrow$ Add be a functor satisfying the Beck-Chevalley property, as above. Let $\alpha: U \rightarrow X$ be a cover in \mathcal{G}, and construct the following pullback square:

Let $\left(W, \gamma: \operatorname{pr}_{2}^{*}(W) \xrightarrow{\sim} \operatorname{pr}_{1}^{*}(W)\right) \in \operatorname{Desc}_{\underline{\mathcal{C}}}(U)$ be an object in the descent category associated with the covering. Applying the Beck-Chevalley property to the above pullback, we obtain a morphism

$$
\gamma^{\prime}: W \longrightarrow\left(\operatorname{pr}_{2}\right)_{*} \operatorname{pr}_{1}^{*}(W) \stackrel{B C^{-1}}{\cong} \alpha^{*} \alpha_{*}(W)=: L(W)
$$

where the first map is obtained from γ by adjunction. Prove the following:
(1) The data $B(W, \gamma):=\left(W, \gamma^{\prime}\right)$ is a comodule over the comonad $L=\left(\alpha^{*} \alpha_{*}, \Delta, \varepsilon\right)$ defined by the adjunction α^{*}, α_{*}.
(2) The assignment $(W, \gamma) \mapsto\left(W, \gamma^{\prime}\right)$ defines an equivalence of categories B making the following triangle commute

up to an isomorphism of functors (here Q and E are the alwaysdefined canonical functors).
(3) Conclude that $\underline{\mathcal{C}}$ satisfies descent with respect to the covering $\alpha: U \rightarrow X$ if and only if the adjunction α^{*}, α_{*} is comonadic.

Problem 3.3. When $[G: H]$ is prime to $p=\operatorname{char}(k)$, show that the unit of the adjunction Res: $\mathcal{C}(G) \leftrightarrows \mathcal{C}(H)$: Ind is a naturally split mono.

Problem 3.4. Given an adjunction $F: \mathcal{C} \leftrightarrows \mathcal{D}: G$ of abelian (respectively, Frobenius abelian) categories such that the unit is naturally split, as in the previous exercise, when is the unit of the induced derived (resp. stable) adjunction also split?

