PROBLEM SESSION DESCENT TECHNIQUES IN MODULAR REPRESENTATION THEORY

PAUL BALMER

4. Lecture

Let k be a field of characteristic p > 0, and let G be a finite group.

Problem 4.1. Show that a kG-module M is endotrivial if and only if its restriction $\operatorname{Res}_{P}^{G}(M)$ to a p-Sylow subgroup P of G is endotrivial.

Problem 4.2. Show that the Čech complex is, indeed, a complex. Compute $\check{H}^0(U, F)$ when F is a sipp sheaf.

Problem 4.3. Show that the Čech cohomology group $\check{\mathrm{H}}^1(\mathscr{U}, \mathbb{G}_{\mathrm{m}})$ for the cover $\mathscr{U} = \{G/H \to G/G = *\}$ is naturally isomorphic to the group (with respect to point-wise multiplication) of "weak *H*-homomorphisms $G \to k^{\times}$ ", i.e., those functions $u: G \to k^{\times}$ such that:

- (a) u(h) = 1 for all $h \in H$;
- (b) u(g) = 1 for all $g \in G$ such that $p \nmid |H^g \cap H|$, and
- (c) $u(g_2g_1) = u(g_2) \cdot u(g_1)$ for all $g_1, g_2 \in G$ with $p \mid |H^{g_2g_1} \cap H^{g_1} \cap H|$.

Problem 4.4. Show that $\check{H}^0(\mathscr{U}, \operatorname{Pic}^{\operatorname{st}})$ (for the same covering as above) is isomorphic to

 $\{W \in T(P)\} \mid \forall g \in G : \operatorname{Res}_{P[g]}^{P}(W) \cong {}^{g}\operatorname{Res}_{P[g]}^{P}(W) \text{ in } T(P[g])\} \subseteq T(P)$ where $P[g] := P^{g} \cap P$.