PROBLEM SESSION
 MODULES OF CONSTANT JORDAN TYPE AND
 VECTOR BUNDLES ON PROJECTIVE SPACE

DAVE BENSON

Throughout these questions, $E=(\mathbb{Z} / p)^{r}=\left\langle g_{1}, \ldots, g_{r}\right\rangle$ is an elementary abelian p-group, k is a field of characteristic p and M is a finitely generated $k E$-module. We write X_{i} for the element $g_{i}-1 \in k E$.

1. Modules of constant Jordan type

Question 1. Let $E=\mathbb{Z} / p \times \mathbb{Z} / p=\left\langle g_{1}, g_{2}\right\rangle$ have rank two. Decide which of the following $k E$-modules have constant Jordan type.
a) $g_{1} \mapsto\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right), \quad g_{2} \mapsto\left(\begin{array}{cc}1 & 0 \\ \lambda & 1\end{array}\right) \quad(\lambda \in k)$.
b) $g_{1} \mapsto\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad g_{2} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$
c) $g_{1} \mapsto\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right) \quad g_{2} \mapsto\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$
d) $g_{1} \mapsto\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right) \quad g_{2} \mapsto\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$
[Hint: the answer depends on the characteristic of k]
e) ($p \geq 3$) The module with diagram

(Begin by writing down the matrices for this module)
f) The radical of the module in e).

Question 2. Which of the modules in question 1 have the constant image property?

Questions 3-7 are designed to show that there are a lot of modules of constant Jordan type for $\mathbb{Z} / p \times \mathbb{Z} / p$ for $p \geq 3$ and for $(\mathbb{Z} / p)^{3}$ for any prime.

Informally, an algebra A has wild representation type if we can define, for each pair of $n \times n$ matrices X and Y, a representation of A in such a way that X and Y can be recovered up to simultaneous conjugation.

Question 3. Show that for $r \geq 3, k E$ has wild representation type, by considering the matrices

$$
\left(\begin{array}{cc}
I & 0 \\
I & I
\end{array}\right) \quad\left(\begin{array}{cc}
I & 0 \\
X & I
\end{array}\right) \quad\left(\begin{array}{cc}
I & 0 \\
Y & I
\end{array}\right) .
$$

Question 4. By considering the matrices

$$
\left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
X & I \\
I & Y
\end{array}\right),
$$

show that classification of pairs of square matrices with no common eigenvectors, up to simultaneous conjugation, is of wild representation type.

Question 5. Consider the quiver

$$
Q=\bullet \stackrel{\underset{\delta}{\beta}}{\stackrel{\alpha}{\longrightarrow}} \stackrel{\xrightarrow[\gamma]{\alpha}}{\stackrel{\alpha}{\longrightarrow}}
$$

with relation $\alpha \beta=\gamma \delta$. Use the diagram
to show that this quiver has wild representation type.
Question 6. Show that in question 5 if X and Y have no common eigenvectors then for all λ and μ in k, not both zero, $\lambda \beta+\mu \delta$ is injective, $\lambda \alpha+\mu \gamma$ is surjective, and their composite is injective.

Use this to construct a wild set of modules of constant Jordan type for $\mathbb{Z} / p \times \mathbb{Z} / p$ when $p \geq 3$.

Question 7. Show that the quiver

is of wild representation type by considering the matrices

$$
\left(\begin{array}{llll}
I & 0 & 0 & 0 \\
0 & I & 0 & 0
\end{array}\right) \quad\left(\begin{array}{llll}
0 & I & 0 & 0 \\
0 & 0 & I & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
X & 0 & I & Y \\
0 & 0 & 0 & I
\end{array}\right)
$$

as maps from $V^{\oplus 4}$ to $V^{\oplus 2}$. Use this to construct a wild set of modules of constant Jordan type for $(\mathbb{Z} / p)^{3}$ for any prime p.

Question 8. Let M_{n} be the module with diagram

More explicitly, M_{n} has basis elements $u_{1}, \ldots, u_{n-1}, v_{1}, \ldots, v_{n}$ and w_{1}, \ldots, w_{n-1} with
$X_{1}\left(u_{i}\right)=v_{i} \quad X_{2}\left(u_{i}\right)=v_{i+1} \quad X_{1}\left(v_{i+1}\right)=X_{2}\left(v_{i}\right)=w_{i} \quad(1 \leq i \leq n-1)$
and all other basis elements sent to zero by X_{1} and X_{2}. Show that M_{n} has constant Jordan type if and only if n is divisible by p, with Jordan type $[3]^{n-2}[2]^{2}$.

Question 9. Find the generic kernel of the module M_{n} given in question 8.
[Hint: use the fact that the generic kernel is the largest submodule with the constant image property.]

Question 10. Show that if M has constant Jordan type then so does $\Omega(M)$, the kernel of the projective cover of M. Is it also true that if M has the constant image property then so does $\Omega(M)$?

Question 11. If M has the constant image property, show that the image of each $X_{\alpha}^{j}\left(0 \neq \alpha \in \mathbb{A}^{r}(k)\right)$ is equal to $\operatorname{Rad}^{j}(M)$. Deduce that $\operatorname{Rad}^{p}(M)=0$. What is the smallest value of n such that $\operatorname{Rad}^{n}(k E)=0$?
Question 12. Let $E=\langle g\rangle$ be cyclic of order $p>2$. If M is the indecomposable $k E$-module on which g acts with a Jordan block of length two, find the structure of $M \otimes M, \Lambda^{2}(M)$ and $S^{2}(M)$.

Question 13. Let $E=\langle g\rangle$ be cyclic of order p, and write J_{i} for the indecomposable $k E$-module on which g acts with a Jordan block of length i.
(1) Show that $J_{2} \otimes J_{i}$ is isomorphic to $J_{i+1} \oplus J_{i-1}$ if $1 \leq i \leq p-1$ and to $J_{p} \oplus J_{p}$ if $i=p$.
(2) Find $J_{3} \otimes J_{3}$ using the first part of the question and the associativity of tensor product. Treat the cases $p=3$ and $p \geq 5$ separately.
(3) If $p \geq 5$ find $S^{2}\left(J_{3}\right)$ and $\Lambda^{2}\left(J_{3}\right)$.

Question 14. Let E have rank two, and let M be a $k E$-module of constant Jordan type. Let $\mathfrak{K}(M)$ be the generic kernel of M. Show that the following quantities for the subquotient $J^{-1} \mathfrak{K}(M) / J^{2} \mathfrak{K}(M)$ are independent of $0 \neq \alpha \in \mathbb{A}^{2}(k)$:

- The number of Jordan blocks of length one of X_{α}.
- The total number of Jordan blocks of X_{α}.
- The dimension of $J^{-1} \mathfrak{K}(M) / J^{2} \mathfrak{K}(M)$.

Prove that $J^{-1} \mathfrak{K}(M) / J^{2} \mathfrak{K}(M)$ has constant Jordan type.
Question 15. Let $E=\mathbb{Z} / p \times \mathbb{Z} / p$. If M has constant Jordan type with no Jordan blocks of length one, it is known that the total number of Jordan blocks is divisible by p. Apply this to $\Omega(M)$ to deduce that if M has constant Jordan type with no Jordan blocks of length $p-1$ then the number of Jordan blocks of length p is divisible by p.

2. The stable module category

In preparation for working with vector bundles and modules of constant Jordan type, we begin with a set of exercises to get you used to the stable module category $\operatorname{stmod}(k E)$. Since the construction of the stable module category works just as well for any finite group G, we shall work in this context.

The stable module category $\operatorname{stmod}(k G)$ has the same objects as the module category $\bmod (k G)$, but the morphisms are given by

$$
\operatorname{Hom}_{k G}(M, N)=\operatorname{Hom}_{k G}(M, N) / \operatorname{PHom}_{k G}(M, N)
$$

where $\operatorname{PHom}_{k G}(M, N)$ is the linear subspace consisting of homomorphisms that factor through some projective ($=$ injective) $k G$-module.

Question 16. (1) Show that the linear map $k G \rightarrow \operatorname{Hom}_{k}(k G, k)$ given by $g \mapsto\left(h \mapsto \delta_{g, h}\right)$ is a $k G$-module isomorphism. Deduce that $k G$ is an injective $k G$-module, and hence every projective $k G$-module is injective.
(2) If M is a $k G$-module, show that the $k G$-module $M \downarrow_{1} \uparrow^{G}=k G \otimes_{k}$ M (where $g \in G$ acts via $g(h \otimes m)=g h \otimes m$) is free, and hence projective.
(3) Show that the map $M \rightarrow M \downarrow_{1} \uparrow{ }^{G}$ given by

$$
m \mapsto \sum_{g \in G} g \otimes g^{-1} m
$$

is an injective $k G$-module homomorphism. Thus every module embeds in a projective module. Deduce that every injective $k G$-module is projective.

Question 17. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of $k G$-modules. Let $P \rightarrow C$ be a projective module surjecting onto C with kernel $\Omega(C)$. Lift to a homomorphism $P \rightarrow B$ to obtain a diagram

to show that there is a short exact sequence

$$
0 \rightarrow \Omega(C) \rightarrow P \oplus A \rightarrow B \rightarrow 0
$$

in $\bmod (k G)$.
Dually, embed A in an injective module I with cokernel $\Omega^{-1}(A)$ to obtain a diagram

and hence a short exact sequence

$$
0 \rightarrow B \rightarrow I \oplus C \rightarrow \Omega^{-1}(A) \rightarrow 0
$$

in $\bmod (k G)$.
Question 18. We make $\operatorname{stmod}(k G)$ into a triangulated category in which the translation is the functor Ω^{-1}. The triangles are the triples of modules and homomorphisms

$$
A \rightarrow B \rightarrow C \rightarrow \Omega^{-1}(A)
$$

which are isomorphic to triples coming from short exact sequences

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

using the process described in Question 17 for obtaining the third map $C \rightarrow \Omega^{-1}(A)$.

If you have the stamina, check the axioms for a triangulated category. The third isomorphism theorem in $\bmod (k G)$ will be required in order to verify the octahedral axiom for $\operatorname{stmod}(k G)$.

3. Vector bundles on projective space

Question 19. Consider the Euler sequence defining the tangent bundle

$$
0 \rightarrow \mathcal{O} \rightarrow \mathcal{O}(1)^{\oplus r} \rightarrow \mathcal{T} \rightarrow 0
$$

where the first map in this sequence is given by the column vector $\left(Y_{1}, \ldots, Y_{r}\right)^{t}$, and tensor with $\mathcal{O}(-1)$ to get

$$
0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O}^{\oplus r} \rightarrow \mathcal{T}(-1) \rightarrow 0
$$

If $p=2$, realise the first map in this sequence with a map

$$
\Omega(k) \rightarrow k^{\oplus r}
$$

and complete to a triangle in $\operatorname{stmod}(k E)$. Show that this gives a short exact sequence in $\bmod (k E)$

$$
0 \rightarrow \Omega(k) \rightarrow k E \oplus k^{\oplus r} \rightarrow M_{\mathcal{T}} \rightarrow 0
$$

Write down matrices for the action of E on the $r+1$ dimensional module $M_{\mathcal{T}}$.

Question 20. The null correlation bundle \mathcal{F}_{N} on $\mathbb{P}^{r-1}(r$ even $)$ is the homology in the middle place of the complex

$$
0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O}^{\oplus r} \rightarrow \mathcal{O}(1) \rightarrow 0
$$

where the first map is given by the column vector $\left(Y_{1}, \ldots, Y_{r}\right)^{t}$ and the second map is given by $\left(Y_{r},-Y_{r-1}, \ldots, Y_{2},-Y_{1}\right)$. If $p=2$, construct a $k E$-module M_{N} of dimension $r+2$ with $\mathcal{F}_{1}(M) \cong \mathcal{F}_{N}$. Write down matrices for the action of E on M_{N}.

Compare your construction with the following diagram in $\operatorname{stmod}(k E)$:

Question 21. For p odd and r even, give a construction in $\operatorname{stmod}(k E)$ of a module M of stable constant Jordan type $[1]^{r-2}$ with $\mathcal{F}_{1}(M) \cong$ $F^{*}\left(\mathcal{F}_{N}\right)$, the Frobenius pullback of the null correlation bundle on \mathbb{P}^{r-1}.

Question 22. This question gives a simplified version of Tango's construction of rank $r-2$ vector bundles on \mathbb{P}^{r-1} (not to be confused with the Tango bundle of rank 2 on \mathbb{P}^{5} in characteristic two).

Let V be a vector space of dimension r over k, and let $V \times V \rightarrow \Lambda^{2}(V)$ be the map sending (x, y) to $x \wedge y$. Show that the image is a subvariety of dimension $2 r-3$. Deduce that there is a linear subspace W of $\Lambda^{2}(V)$ of codimension $2 r-3$ whose intersection with the image is just the origin. In other words, W contains no non-zero element of the form $x \wedge y$.

Now look at the beginning of the Koszul complex on \mathbb{P}^{r-1}, suitably twisted:

$$
0 \rightarrow \mathcal{O}(-2) \rightarrow \mathcal{O}(-1)^{\oplus r} \rightarrow \mathcal{O}^{\binom{r}{2}} \rightarrow \mathcal{E} \rightarrow 0
$$

Thinking of $\mathcal{O}\binom{r}{2}$ as $\Lambda^{2}(V) \otimes_{k} \mathcal{O}$, there is a trivial subsheaf $W \otimes_{k} \mathcal{O}$ that injects into \mathcal{E} via the last map in the sequence. Define \mathcal{F}_{W} to be the cokernel of $W \otimes_{k} \mathcal{O} \rightarrow \mathcal{E}$. Show that \mathcal{F}_{W} is a vector bundle of rank $r-2$.

Question 23. For $p=2$, construct a $k E$-module M with $J^{3}(M)=0$ and with radical layers of dimensions $1, r, 2 r-3$ such that $\mathcal{F}_{1}(M)$ is the vector bundle constructed in Question 22.

4. Chern classes

Throughout this section, let $R=k\left[Y_{1}, \ldots, Y_{r}\right]$, let M be a finitely generated graded R-module and let \mathcal{F} be the resulting coherent sheaf on \mathbb{P}^{r-1}.

Question 24. Prove that the Poincaré series $p_{M}(t)$ takes the form

$$
p_{M}(t)=\frac{f(t)}{(1-t)^{r}}
$$

where $f(t)$ is a Laurent polynomial.
[Hint: Consider the kernel and cokernel of multiplication by Y_{r} on M and use induction on r.]

Question 25. Show that

$$
\operatorname{Ch}(\mathcal{F})=\operatorname{rank}(\mathcal{F})+c_{1} h+\frac{1}{2}\left(c_{1}^{2}-2 c_{2}\right) h^{2}+\cdots
$$

and find the next term in this expansion.

Question 26. Show directly from the definition that

$$
c(\mathcal{F}(1), h)=(1+h)^{\operatorname{rank} \mathcal{F}} c\left(\mathcal{F}, \frac{h}{1+h}\right) .
$$

Question 27. Show that the Chern polynomial of the null correlation bundle constructed in Question 20 is $1 /\left(1-h^{2}\right)$.

Question 28. Show that the Chern polynomial of the vector bundles of Tango constructed in Question 22 is $(1-2 h) /(1-h)^{r}$.

Question 29. Use congruences on Chern numbers to prove that if $r \geq 3$ and M has stable constant Jordan type [2] [1] with $p \geq 5$ then $r=3$ and $p \equiv 1(\bmod 3)$. Find the possibilities for $c_{1}\left(\mathcal{F}_{1}(M)\right)$ and $c_{1}\left(\mathcal{F}_{2}(M)\right)$.

5. Hirzebruch-Riemann-Roch Theorem

Question 30. Prove that $s_{n}(\mathcal{F})=\sum_{j} a_{j} j^{n}=\sum_{j} \alpha_{j}^{n}$. [Hint: take logs of both sides of the equation defining $c(\mathcal{F}, h)$ and differentiate]

Question 31. Use Schwartzenberger's conditions to show:
(i) For a coherent sheaf on \mathbb{P}^{3} we have $c_{1} c_{2}+c_{3} \equiv 0(\bmod 2)$.
(ii) For a rank two vector bundle on \mathbb{P}^{4} we have

$$
c_{2}\left(c_{2}+1-3 c_{1}-2 c_{1}^{2}\right) \equiv 0 \quad(\bmod 12)
$$

Question 32. Let $p=2$ and let M be a module of constant Jordan type $[2]^{n}$. Use the formula $c\left(\mathcal{F}_{2}(M)\right) c\left(\mathcal{F}_{2}(M)(1)\right)=1$ to prove that $n=-2 c_{1}\left(\mathcal{F}_{2}(M)\right)$. What can you deduce about $c_{2}\left(\mathcal{F}_{2}(M)\right)$?

Question 33. Let $p=2$ and $r=4$ (i.e., $\left.E \cong(\mathbb{Z} / 2)^{4}\right)$ and let M be a module of constant Jordan type [2] . Prove that

$$
\mathcal{F}_{2}(M)=1-\frac{n}{2} h+\frac{n^{2}}{8} h^{2}-\frac{n^{3}-4 n}{48} h^{3} \in \mathbb{Z}[h] /\left(h^{4}\right) .
$$

Without Hirzebruch-Riemann-Roch deduce that n is divisible by four. Using part (i) of the previous question, show that the Hirzebruch-Riemann-Roch theorem implies that n is divisible by eight. [This also follows from Dade's lemma!]

Question 34. Use Poincaré series directly, instead of going through the Hirzebruch-Riemann-Roch theorem, to show that if M is a module of constant Jordan type $[2]^{n}$ then $2^{r-1} \mid n$.

Question 35. Use the Hirzebruch-Riemann-Roch theorem to prove that if M is a module of constant Jordan type $[2]^{n}[1]^{2}$ for $(\mathbb{Z} / 2)^{4}$ then n is not congruent to 1,3 or 5 modulo 8 .

Question 36. We define a nilvariety of rank r and constant Jordan type $\left[a_{1}\right] \ldots\left[a_{t}\right]$ to be a linear space of square matrices all non-zero elements of which have the same Jordan canonical form, with Jordan blocks of sizes a_{1}, \ldots, a_{t}. The matrices do not necessarily commute, so they do not necessarily define a representation of $(\mathbb{Z} / p)^{r}$. Show that the matrices

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)
$$

span a nilvariety of rank two and constant Jordan type [3] in any characteristic.

Question 37. Show that a nilvariety of rank r and constant Jordan type $[2]^{n}$ is the same as a representation of an exterior algebra on r generators.

Question 38. Show, using Poincaré series, that a rank r nilvariety of constant Jordan type $[3]^{n}$ necessarily satisfies $3^{\left\lfloor\left.^{\left.\frac{r-1}{2}\right\rfloor} \right\rvert\, n \text {. Use tensor }\right.}$ products of the example from Question 36 to show that in characteristic three this is best possible.

Question 39 (Causa, Re, Teodorescu). Show that if there is a nilvariety of rank r and constant Jordan type $[m]$ then $r \leq 2$, and if $r=2$ then m is odd.
[Hint: If $r \geq 3$ then the line bundles $\mathcal{O}(n)$ do not extend each other: for all $n, n^{\prime} \in \mathbb{Z}$ we have $\operatorname{Ext}_{\mathcal{O}_{\mathbb{p} r-1}}^{1}\left(\mathcal{O}(n), \mathcal{O}\left(n^{\prime}\right)\right)=0$.]

