COMMUTATIVE ALGEBRA FOR MODULAR
REPRESENTATIONS OF FINITE GROUPS

The following notes have been taken from a lecture series by Srikanth B. Iyengar
given during a summer school on Cohomology and Support in Representation Theory
which took place in Seattle in 2012.

Notetaker: Reiner Hermann

LECTURE 1

The aim of this lecture series is to build up the following connections

Representations . _ _ _ _ _ _ _ _ _ _ _ _ _ _ N Modules over
of finite groups the polynomial ring
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1.1. Group representations. Let G be a finite group and let k be a field of
characteristic p > 0. A (k-linear) representation of G is a k-vector space V with
a G-action. This is the same as specifying a group homomorphism G — GLg (V).
Easy examples are given by the zero-representation (i.e. V = 0) and the trivial
representation of G, that is k with trivial G-action.

If V and W are representations of GG, then so is their direct sum V & W, namely
via the G-action given by g(v,w) := (gv,gw) (g € G, v € V, w € W). A represen-
tation V #£ 0 of G is indecomposable if V = V) & V5 for two representations Vi, V5
of G, implies that V; =0 or V5 = 0.

Fix a finite dimensional representation V of G (i.e. dimg(V) < o0). One can
decompose V as

V= é W
i=1

for some integers e; > 1 and indecomposable representations W; of G with W; 2
W; for i # j (1 <4,j < n). A theorem of Krull-Remak-Schmidt tells us, that
such a decomposition is unique, i.e. the W, and e; are determined by the given
representation V.

Theorem 1.1 (Maschke). If char(k) does not divide |G|, then every indecomposable
representation of G is a direct summand of the regular representation, that is, it is
1
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a direct summand of the G-representation Vg given by the data:
Vo :=@ks,  h(D_ Ag) =) Nhg, heG.
geG geG geG
Corollary 1.2. If char(k) does not divide |G|, then there are only finitely many
non-isomorphic indecomposable representations of G.

Example 1.3. Consider the Klein four-group G = Z/2 x Z/2. Let char(k) = 2.
Then the trivial representation is not a direct summand of the regular one. This
follows from Ext{(k, k) # 0. Moreover, for any even n > 2 there are infinitely
many non-isomorphic indecomposable representations of G having dimension n.

1.2. The group algebra of (. The regular representation Vi of G is in fact a
k-algebra.
Definition 1.4. The group algebra kG of G is the k-vector space
kG = P kg (= Vo)
geG
with multiplication induced by the product on G:
pikG@REG = kG, > Agn(g®@h) = Y Agngh.
g,h€G g,h€G

Note that the unit of kG is the unit of G and that kG is commutative if and
only if G is abelian.
Example 1.5. Let G =Z/d = (g | g¢* = 1), then

__FKlg]
TR

More generally,

k[glv cee 797’]

k[Z/di1 X"'XZ/d?]: (gel_l ger_l) .
1 P

Remark 1.6. One should note that
e specifying a group homomorphism G — GLg (V) = Auty (V) is the same as
specifying a k-algebra homomorphism kG — Endg (V). This translates to
the statement, that, for a k-vector space V', having a G-action on V is the
same as having a (left) kG-module structure on V.
e the map ¢ : kG — k, e(g) = 1, is a k-algebra homomorphism.

1.3. Reduction to elementary abelian p-groups. A p-subgroup F of G is called
an elementary abelian p-subgroup if it is isomorphic to a group of the form

L[p X Lfp x --- x L|p = (Z/p)"
for some 7 > 0. The number r is the rank of the elementary abelian p-subgroup.

It is known, that many properties of a given kG-module can be checked by looking
at its kFE-module structure for every elementary abelian p-subgroup F C G.

Fix a subgroup H of G. The group algebra kH is then a (unital) subalgebra of
kG. Let M be a kG-module. Then

M |y == M as a kH-module via kH — kG.
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The motivating theorem is the following.

Theorem 1.7. A kG-module M is projective if and only if M |g is a projective
kE-module for every elementary abelian p-subgroup E C G.

Let E=(Z/p)" = {(91,-..,9r | 97) and char(k) = p > 0. Then

kE: k[gl’..-’gr] :k[217...72,r,]

(g —1,...,97 =1)  (&F,...,20)°
where z; = ¢g; — 1. For this, note that (a + b)? = aP + bP. Suppose p = 2. Then

KE — k[z;,...,zr]’
(27,...,22)
which is a Koszul algebra. By definition, its Koszul dual is given by Ext} (k, k) =
klx1,...,2.], |z;] = 1. J. Moore and S. Priddy showed, that there is an equivalence

of categories:
DI (k15) > D (klz)
sending k to k[z] and kFE to k. Here
DI(KE) := {X € D(kE) | H*(X) finitely generated as a kFE-module},
DS (k[z]) := derived cat. of differential graded k[z]-modules with f.g. cohomology,

where k[z] is viewed as a DG algebra with 92l = 0. Suppose now that char(k) > 3.
Then kFE is no longer Koszul. Its Koszul dual is given by

Extrg(k, k) = (Ag @kfﬂi) @k klyr, .-yl luil =2
i=1
There is functor
F: DI KE) — D (k[y1,...,vs])
mapping kF to k and k to Exty ;(k, k). We are going to construct F in the following
lectures.

LECTURE 2
As before, let k be a field with char(k) =p > 0 and E := (Z/p)" for some r > 1.

2.1. DG modules over DG algebras. Let R be a commutative ring and let
M = (M,3™) be a complex of R-modules:

oM . oM . oM ) oM
s MY s M M S

Denote by M* the underlying graded R-module {M*};cz. For m € M let |m| :=i
be its degree. By a DG (Differential Graded) R-algebra A, we mean

(1) Ais a complex of R-modules.

(2) A%is a graded R-algebra.

(3) The above structures satisfy the Leibniz rule:

94 (ab) = 04 (a)b + (—1)1"ad” (b),
where a,b € A are homogeneous.
Let A be a DG R-algebra. A DG A-module M is given as follows.
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(1) M is a complex of R-modules.
(2) M? is a graded A%-module.
(3) The above structures satisfy the Leibniz rule:
oM (am) = 8 (a)m + (—1)1%1adM (m),
where a € A, m € M are homogeneous.

Example 2.1. (1) A graded R-algebra A can be viewed as a DG algebra with
04 = 0. Then a DG A-module is a graded A-module {M*};cz along with
R-linear maps OM : M? — M1 i € Z, such that 0™ o 9™ = 0 and
OM(am) = (=1)l9lad™ (m) (a € A, m € M homogeneous).

If A= A°, then a DG A-module is simply a complex of A-modules.
(2) Fix r € R. Consider the Koszul DG algebra K (r) on r:

K(r) = 0 R——R 0.
~1 0

This has a canonical structure of a DG R-algebra. An alternative construc-
tion is given in terms of the exterior algebra:

K(r) := Ag(Re), le|=—-1, 85 (e) =1
It is an easy exercise to show that if A and B are DG R-algebras, then the
complex A ®p B is a DG R-algebra via
(a®@b)(d @V) = (71)‘b||a/‘aa’ ®bb.

The maps A - AQgr B, a—~a®1land B > AQr B, b — 1®b are
morphisms of DG R-algebras.
Now if r := (r1,...,75) is a sequence of elements in R, set

K(r)=K(r)®gr - Qr K(ry)

= AR@Rey), el = -1, 5O (e;) = 1.
=1

K (r) enfolds as
K(r) = OHRel/\'--/\en%...—)@i’jRei/\ej — P, Re; — 0.
—n -1 0

2.2. A DG R-algebra is graded commutative if ab = (—1)I%!’lbg for all homoge-
neous a,b € A. Note that if the degree of a € A is odd, then 2a? = 0. The graded
commutative DG R-algebra A is strictly graded commutative if a> = 0 for all homo-
geneous a € A of odd degree. Note that if A = A°V", then graded commutativity
is the same as strict graded commutativity. Moreover, if A and B are (strictly)
graded commutative it follows that A ® g B is (strictly) graded commutative.

Example 2.3. K(ry,...,r,) is strictly graded commutative.

Let A be a DG R-algebra. A twisting cochain in A is an element o € A! such
that

(1) 0%(a) = a?,
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(2) aa = (—1)*laa for all homogeneous a € A.
Let a be a twisting cochain. Let M be a DG A-module. The complex
M = (M5 oM + o)
delivers a DG A-module M. In cash, its differential is given by
oM (m) =M (m) +am, me M.

2.2. The derived category of DG modules. Let A be a DG R-algebra and
M a DG A-module. Then H*(A) is a graded R-algebra and H*(M) is a graded
H*(A)-module.

A morphism f : M — N of DG A-modules (i.e. a morphism of graded A-
modules which commutes with the differentials) is a quasi-isomorphism if H*(f) :
H*(M) — H*(N) is an isomorphism. Then

D(A) := (DG A-modules)[quasi-iso ']
is the derived category of DG A-modules. Its suspension is given as follows.
If M is a DG A-module, denote by XM the DG A-module whose underlying
graded A-module is given by
SM =M e,
with A acting via
axm:= (=1)%am, a€ A, m € M homogencous.

The differential is M = —9M. ¥ M is the suspension of M. We obtain a functor
3(?) being an equivalence of categories and delivering an automorphism of D(A)
which we are also going to denote by . Define X1 M = %(X'M), i € Z.

We go back to our leading example, namely the group algebra of E = (Z/p)":
klz1,. .., 2]
(2F,..28)

Let K be the Koszul DG algebra on z4,..., 2., i.e.

kE =

K = Ap(@kEe:), el = —1, 05 (e;) = 2.

i=1

Pl = 2P = 0. It is a fact, that

Evidently: 8% (27 "e;) = 2
H™Y(K) = Dkl
i=1

and
H*(K) = Ay(S(HTH(K))).
This is the crucial property of the Koszul DG algebra of kE.
2.4. Set S :=k[y1,...,y), |lyil =2 fori =1,...,r. We view S as a DG algebra

with 9% = 0. Set A := K ®;, S which is a DG k-algebra being strictly graded
commutative. Put

s
o ::szflei@)yi e Al
i=1
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One observes that
,

04 (a) = Z@K(zf_lei) @y; =0=a
i=1
Therefore « is a twisting cochain. Denote by S* the DG S-module
(§*)% = Homy (S, k), &% =0.
Then K ®; S* is a DG A-module. Set
X = (K Rk S*)a.

Example 2.5. Consider the case r = 1. Then S = k[y| with |y| = 2. We have that
S = k[y~!] and the S-module structure is given by y.y~7 = y=7T1if j > 1, y.1 = 0.
Remember that the Koszul DG algebra of kE = k(z)/(2?) on z looks as follows:

0 kE —=—kE 0.
-1 0
One may think of X as
i —— kFey ! —— kEy~! kEe kE 0.
-3 —2 -1 0

2.6. There is a natural map ¢ : X — k that is k-linear. Note the following two
useful facts.

(1) € is a quasi-isomorphism. Hence X is exact in every degree different from
Z€ro.

(2) X'is a free kE-module for all i < 0 and X* = 0 for i > 0, that is X is a
free resolution of k over kF with augmentation given by €.

The assignment
Mod(kE) > M — Homyg(X,M) € Mod(S)
induces an exact functor

D(KE) — D(S).

Theorem 2.7 (Avramov, Buchweitz, I., Miller). The above functor induces an
exact functor

F:DI(kE) — DI(S)
such that

F(kE)=k and F(k)= @ »-is().
=0

Here we used the following notation:
DIKE) := {M € D(kE) | H*(M) finitely generated as a kFE-module},
DI(S) := {N € D(S) | H*(S) finitely generated as a S-module}.

Remark 2.8. (1) H*(F(M)) = Extyg(k,M) and S C Ext;(k,k) = F(k) as
S-modules.
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(2) F is faithful on objects, but not on maps.
(3) F gives rise to the following commutative diagram:

thickyz (kE) —— thickg (k)

Df (kE) —E— DI(9)

l |

stmod (kE) ——— Diff(P"—1)

where Diff(P"~1) is the category of differential sheaves on P"~!. The cate-
gories thickyg(kE) and thickg(k) will be constructed in lecture 3.

LECTURE 3

Let k be a field with char(k) =p > 0, let R = kE, E = (Z/p)", as before and
put
S :=Fk[y,...,y), |w|l=2 9°=0.
3.1. Let M be a R-module. The Loewy length of M is
Up(M) :=inf{n >0 (2)"M = 0}.
Note that if £ := ¢¢r(M), we obtain a filtration
0= 'MC ()" M- C(eMCM
where each subquotient ‘
(2)'M :

—_— <i</fi-1

@ VstEh
is a k-vector space. Note that £0r(M) < llr(R) < co.
Theorem 3.2. For a given a perfect complex P® over R, that is a complex

0P — ... P -0
with P* a finitely generated projective R-module (s <1i <t), with H*(P*) # 0, one
has that '

> UR(H!(P*) =1 +1.

=7/

We are going to prove this theorem. Beforehand, we will discuss some applica-

tions and introduce further notation.

3.3. Suppose that E acts freely on a topological space X. Then the associated
complex ¢, (X, k) is a perfect one. Therefore, by the theorem,

ZEEkE(Hi(X, k) >r+1.
‘€T
In particular, if the F-action on H;(X, k) is trivial, then
#{i | Hi(X, k) £0} >r+ 1.
From this we deduce that (Z/2)" cannot act freely on S™ for r > 2.
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3.4. For the moment, put

R.— k[[zl,...,zc]]7
(f17 sy fC)
where fi1,..., f. is a regular sequence (for example: f; = zzd’ for some d; > 1).

Theorem [3.2] extends to such rings. In particular, £(z(R) > c+ 1 holds, so (2)¢ # 0
in R,ie (2)°Z (fi,..., fe) in k[z1,..., 2]

Compare this to the New Intersection Theorem: If A is a local ring and P*® a
perfect complex over A with 0 < length(H*(P*)) < oo, then (t — s) > Kdim(A).
Here s < t are integers such that P! =0 for i ¢ {s,s+ 1,...,t}.

3.5. Let us recall some further constructions on DG algebras and DG modules.
Let A be a DG algebra.

(1) Remember, that the direct sum of two DG A-modules becomes a DG A-
module in the obvious way.

(2) The mapping cone Cone(f) of a DG A-module homomorphism f: M — N
is a DG A-module such that the natural sequence

0 — N — Cone(f) = XM — 0
is an exact sequence of DG A-modules.
Mapping cones define the exact triangles in D(A), i.e.
ALL Mo NSy
where N is the mapping cone of f (up to an isomorphism in D(A)).

3.1. Thickenings. Let A be a DG algebra und C' a DG A-module. Consider the
following sequence

thick% (C) C thick}y(C) C thick% (C) € -+ € | thick’4(C) =: thicka(C)
n>1
of full subcategories of D(A).
e thick’, (C) = {0}.
e M € D(A) lies in thick) (C) if and only if M is a direct summand of

t
i=1

for some integers ¢,by,...,b; > 1.
e Let n > 2. M € D(A) lies in thick’;(C) if and only if there is an exact
triangle

A:NL Lo MeM 5 BN
in D(A) such that N € thick)(C) and L € thick’y (C).
The DG A-modules in thick 4 (C) are those, that can be build out of C. Let A be

any ring, i.e. a DG algebra concentrated in degree zero. Then thicky (A) computes
as follows.

) thickjl\ (A) = finitely generated graded projective A-modules, i.e. complexes
of finitely generated A-modules with zero differential.
e thick} (A) = {Cone(P — Q) | P,Q € thickj (A)}.



COMMUTATIVE ALGEBRA FOR MODULAR REPRESENTATIONS OF FINITE GROUPS 9

e In general: thick}\(A) = perfect complexes of A-modules. In fact, M €
thick’ (A) if and only if M is isomorphic (in D(A)) to a complex P*® that
admits a filtration by subcomplexes

0=P*(0)CP*(1)C---P*(n—1)C P*(n)=P*
such that the subquotients
Pe(i+1)
Pe(i)
are finitely generated graded projectives.

Definition 3.6. Let A be a DG algebra. A DG A-module M is perfect if M €
thiCkA(A).

Remark 3.7. If A is noetherian, then thick4(A) C D(A). Equality holds if and only
if A is regular, i.e. gldim(A) < co.

3.2. Levels. Let A be a DG algebra and C, M € D(A). In case M € thicka(C),
set

0<:<n—1,

level§ (M) := inf{n > 0| M € thick’; (C)}.
If M ¢ thick4(C), put level§ (M) := co. Observe that, if F : D(A) — D(B) is an
exact functor, where B is a DG algebra, then

level§ (M) > level 59 (F(M)).

Remark 3.8. If H*(A) is noetherian and H*(M) is a finitely generated H*(A)-
module, then 1+ gldim(H*(A)) > level4(M). In particular,

r+ 1> level3(M)
for any M € D7(S). Hence thick(S) = D/ (9).

3.9. Now let R be kE again (or any local ring with residue field k). Let M be a
finitely generated R-module and ¢ = ¢¢r(M). Recall that there is a filtration

0=@'MC @ 'Mc-C(zIMCM

where each subquotient
(2)'M :
— 0<i<t—-1
@ T
is a k-vector space, i.e. in thick}, (k). Hence levell,(M) < £0r(M) (in fact, equality
holds). More generally,

levelfy(M) <> Ulp(H'(M)), M € D/(R).
i€Z
We have established all necessary results and notation to prove Theorem [3.2]
Proof of Theorem[3.3 If P* is a perfect complex, then P* € thickg(R). Therefore
F(P*®) € thickg(F(R)) = thicks(k). Combining this with the faithfulness of F, we
get
0 < lengthg H*(F(P*®)) < o0
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Moreover,
> U H'(P®) > level}y,(P*)
i€z
> levell, ™ (F(P*))
= levelg(F(P*)) (for thickg(F(k)) = thickg(S))
> Kdim(S) + 1,
where the last inequality uses the DG algebra version of the New Intersection
Theorem stated after the proof. O
Theorem 3.10. If S is a DG algebra such that 0° =0 and S is commutative and

noetherian containing a field, then for any DG S-module M one has

levelZ (M) > Kdim(S) + 1

LECTURE 4

Let k be a field with char(k) =p > 0. As usual, let

k‘[zl, ce 7Zr]
(20,0207
S=kly,...owl, lwil =2 9% =0.
Let K(z) be the Koszul DG algebra on z = (z1,...,%,). For any R-module or

complex M over R put K(z; M) := K(z) ®g M. Using this, F' may be expressed
as

R :=

F(M)=(S@p K(zM)*, a=Y 02l e; (MeD/(R)).
i=1
It is a fact that F' admits a left adjoint G:
D/(R)

X®V§?_:GT J{F

DI (S)

Theorem 4.1. (1) GF(M) = K(z; M) for all M € D/(R).

(2) FG(N) = @®_, =N for all N € DI(53).
Corollary 4.2. (1) thickr(M) = thickp(GF(M)) for all M € DI (R).
(2) thickg(N) = thicks(FG(N)) for all N € DI(S).
Proof. The proof of (2) is clear. Main fact used for (1):
thickz(R) = thickp (K (2)),

where the inclusion D is easy (K (z) is perfect over R), while C is not. It follows,
that

thickg(M) = thickr(K (2) @r M).
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4.3. The corollary delivers the bijection in the top row of the following diagram:

{Thick subcategories} ~ {Thick subcategories}
of D/ (R) of Df(S)

'3
~
~
~ ~
~
~
~
~

{Specialization closed}
subsets of Spec(.S)

where the vertical bijection is due to Hopkins and Benson-I.-Krause. This recovers
a result by Benson-Carlson-Rickhard represented by the dashed arrow.

4.1. Supports. From now on, assume that & = k. By Hilbert’s Nullstellensatz,
we know that the maximal ideals of S are in one-to-one correspondence to A”". Let
I C S be a homogeneous ideal. Then V(I) is a cone in A". For a € A", let fa be
the line through 0 and @ inside A”. We have that

ac€A"liessin V(I) <= {tanV(I)#{0}.
This may be expressed algebraically. For a € A", consider
Tg + S = k[yla e 71/7«] — k[y]a Yi = a;y.

Then, a € V(I) if and only if dimy(k[y], ®s S/I) = oo. Here kly], denotes k[y]
with S-module structure coming from 7.

Definition 4.4. Let M € D(R). Set
Vr(M) :={a € A" | dim; H*(k[y] ®s F(M)) = oo}.
Theorem 4.5 (Avramov). Fiz g € A"\ {0}. Consider the canonical map

klz1,. .., 2] klz1,. .., 2]

Ra :=
- (a12} + -+ ap2¥) (20,020

=R.

Then for any M € D/(R) one has:
a€Vr(M) <= M |g, ¢ thickrs(Ra) (i.e. pdp,(M |gg) = 00)
Proof.

a € VR(M) <= dimy, H" (k[yla ©s (S @k K(z; M))") = oo
< dimy, H*(k[y] @& K(2; M)*2) = oo,

where

T T
Qg = Zaiy @2 e =y® Z a;izP e € (kly] ® K(z; M)t
i=1 i=1
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There is a functor f, : D (Ra) — D7 (k[y]) defined similarly to F. It fits into the
diagram

DI (R) —E— DI(9)

J k[yla®%

D (Ra) —— D (kly]

and fulfills (k[y] @k K(z; M))* = fo(M |ra). We conclude:
a € V(M) = fQ(M l/Rg) ¢ thickk[y] (k)
— M J/Rg¢ thiCkRg(RQ).
(]

4.6. Assume that char(k) = p > 0 and let ¢ € A". We have the following commu-
tative diagram:

c

k[a121+~~+arzr} - - k[Zl,...,ZT]
polynomial extension

l l

kla1z14++arz,] - k[z1,...,2,]
(a1z14+arz,)P polynomial extension (alz]+ +“£Z )

Note that a}zy +--- +aPzP = (a121 + - - + a,2,)P due to p > 0. Moreover, observe
that algebras of the form
klarz1 + -+ - + arz]
(@121 + - +a7"z7’)p’
are precisely those that occure as group algebras of cyclic shifted subgroups of
defined by some given g € A".

acA”,

4.7. Consider the following fact: If R is a commutative ring and M € D7 (R][t])
such that H*(M) is finitely generated over R, then

M e thickgy(R[t]) <= M |g € thickr(R).

Thus,
ali=(al,...;al) ¢ Vp(M) <= M| xx,-y Is perfect
(i aiz)P
— M| i, sl is projective (for M a module)
(4 a5z

meaning that we have recovered Dade’s Lemma.
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