
COMMUTATIVE ALGEBRA FOR MODULAR

REPRESENTATIONS OF FINITE GROUPS

The following notes have been taken from a lecture series by Srikanth B. Iyengar
given during a summer school on Cohomology and Support in Representation Theory
which took place in Seattle in 2012.

Notetaker : Reiner Hermann

Lecture 1

The aim of this lecture series is to build up the following connections

Representations
of finite groups
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Modules over
the polynomial ring

Representations of
elementary abelian groups
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Modules over
complete intersections

uu
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1.1. Group representations. Let G be a finite group and let k be a field of
characteristic p ≥ 0. A (k-linear) representation of G is a k-vector space V with
a G-action. This is the same as specifying a group homomorphism G → GLk(V ).
Easy examples are given by the zero-representation (i.e. V = 0) and the trivial
representation of G, that is k with trivial G-action.

If V and W are representations of G, then so is their direct sum V ⊕W , namely
via the G-action given by g(v, w) := (gv, gw) (g ∈ G, v ∈ V, w ∈W ). A represen-
tation V 6= 0 of G is indecomposable if V = V1 ⊕ V2 for two representations V1, V2

of G, implies that V1 = 0 or V2 = 0.
Fix a finite dimensional representation V of G (i.e. dimk(V ) < ∞). One can

decompose V as

V =

n⊕
i=1

W ei
i ,

for some integers ei ≥ 1 and indecomposable representations Wi of G with Wi �
Wj for i 6= j (1 ≤ i, j ≤ n). A theorem of Krull-Remak-Schmidt tells us, that
such a decomposition is unique, i.e. the Wi and ei are determined by the given
representation V .

Theorem 1.1 (Maschke). If char(k) does not divide |G|, then every indecomposable
representation of G is a direct summand of the regular representation, that is, it is
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2 COMMUTATIVE ALGEBRA FOR MODULAR REPRESENTATIONS OF FINITE GROUPS

a direct summand of the G-representation VG given by the data:

VG :=
⊕
g∈G

kg, h(
∑
g∈G

λgg) =
∑
g∈G

λghg, h ∈ G.

Corollary 1.2. If char(k) does not divide |G|, then there are only finitely many
non-isomorphic indecomposable representations of G.

Example 1.3. Consider the Klein four-group G = Z/2 × Z/2. Let char(k) = 2.
Then the trivial representation is not a direct summand of the regular one. This
follows from Ext1

G(k, k) 6= 0. Moreover, for any even n ≥ 2 there are infinitely
many non-isomorphic indecomposable representations of G having dimension n.

1.2. The group algebra of G. The regular representation VG of G is in fact a
k-algebra.

Definition 1.4. The group algebra kG of G is the k-vector space

kG :=
⊕
g∈G

kg (= VG)

with multiplication induced by the product on G:

µ : kG⊗k kG→ kG,
∑
g,h∈G

λg,h(g ⊗ h) 7→
∑
g,h∈G

λg,hgh.

Note that the unit of kG is the unit of G and that kG is commutative if and
only if G is abelian.

Example 1.5. Let G = Z/d = 〈g | gd = 1〉, then

kG =
k[g]

(gd − 1)
.

More generally,

k[Z/de11 × · · · × Z/derr ] =
k[g1, . . . , gr]

(ge11 − 1, . . . , gerr − 1)
.

Remark 1.6. One should note that

• specifying a group homomorphism G→ GLk(V ) ∼= Autk(V ) is the same as
specifying a k-algebra homomorphism kG → Endk(V ). This translates to
the statement, that, for a k-vector space V , having a G-action on V is the
same as having a (left) kG-module structure on V .
• the map ε : kG→ k, ε(g) = 1, is a k-algebra homomorphism.

1.3. Reduction to elementary abelian p-groups. A p-subgroup E ofG is called
an elementary abelian p-subgroup if it is isomorphic to a group of the form

Z/p× Z/p× · · · × Z/p = (Z/p)r

for some r ≥ 0. The number r is the rank of the elementary abelian p-subgroup.
It is known, that many properties of a given kG-module can be checked by looking
at its kE-module structure for every elementary abelian p-subgroup E ⊆ G.

Fix a subgroup H of G. The group algebra kH is then a (unital) subalgebra of
kG. Let M be a kG-module. Then

M ↓H := M as a kH-module via kH ↪→ kG.
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The motivating theorem is the following.

Theorem 1.7. A kG-module M is projective if and only if M ↓E is a projective
kE-module for every elementary abelian p-subgroup E ⊆ G.

Let E = (Z/p)r = 〈g1, . . . , gr | gri 〉 and char(k) = p > 0. Then

kE =
k[g1, . . . , gr]

(gp1 − 1, . . . , gpr − 1)
=
k[z1, . . . , zr]

(zp1 , . . . , z
p
r )
,

where zi = gi − 1. For this, note that (a+ b)p = ap + bp. Suppose p = 2. Then

kE =
k[z1, . . . , zr]

(z2
1 , . . . , z

2
r )
,

which is a Koszul algebra. By definition, its Koszul dual is given by Ext∗kE(k, k) =
k[x1, . . . , xr], |xi| = 1. J. Moore and S. Priddy showed, that there is an equivalence
of categories:

Df (kE)→ Df (k[x])

sending k to k[x] and kE to k. Here

Df (kE) := {X ∈ D(kE) | H∗(X) finitely generated as a kE-module},

Df (k[x]) := derived cat. of differential graded k[x]-modules with f.g. cohomology,

where k[x] is viewed as a DG algebra with ∂k[x] = 0. Suppose now that char(k) ≥ 3.
Then kE is no longer Koszul. Its Koszul dual is given by

Ext∗kE(k, k) = (Λk

r⊕
i=1

kxi)⊗k k[y1, . . . , yr], |yi| = 2.

There is functor
F : Df (kE)→ Df (k[y1, . . . , yr])

mapping kE to k and k to Ext∗kE(k, k). We are going to construct F in the following
lectures.

Lecture 2

As before, let k be a field with char(k) = p ≥ 0 and E := (Z/p)r for some r ≥ 1.

2.1. DG modules over DG algebras. Let R be a commutative ring and let
M = (M,∂M ) be a complex of R-modules:

· · · ∂M // M i−1 ∂M // M i ∂M // M i+1 ∂M // · · · .

Denote by M \ the underlying graded R-module {M i}i∈Z. For m ∈M i let |m| := i
be its degree. By a DG (Differential Graded) R-algebra A, we mean

(1) A is a complex of R-modules.
(2) A\ is a graded R-algebra.
(3) The above structures satisfy the Leibniz rule:

∂A(ab) = ∂A(a)b+ (−1)|a|a∂A(b),

where a, b ∈ A are homogeneous.

Let A be a DG R-algebra. A DG A-module M is given as follows.
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(1) M is a complex of R-modules.
(2) M \ is a graded A\-module.
(3) The above structures satisfy the Leibniz rule:

∂M (am) = ∂A(a)m+ (−1)|a|a∂M (m),

where a ∈ A, m ∈M are homogeneous.

Example 2.1. (1) A graded R-algebra A can be viewed as a DG algebra with
∂A = 0. Then a DG A-module is a graded A-module {M i}i∈Z along with
R-linear maps ∂M : M i → M i+1, i ∈ Z, such that ∂M ◦ ∂M = 0 and
∂M (am) = (−1)|a|a∂M (m) (a ∈ A, m ∈M homogeneous).

If A = A0, then a DG A-module is simply a complex of A-modules.
(2) Fix r ∈ R. Consider the Koszul DG algebra K(r) on r:

K(r) := 0 // R
r· // R // 0 .

−1 0

This has a canonical structure of a DG R-algebra. An alternative construc-
tion is given in terms of the exterior algebra:

K(r) := ΛR(Re), |e| = −1, ∂K(r)(e) = r.

It is an easy exercise to show that if A and B are DG R-algebras, then the
complex A⊗R B is a DG R-algebra via

(a⊗ b)(a′ ⊗ b′) := (−1)|b||a
′|aa′ ⊗ bb′.

The maps A → A ⊗R B, a 7→ a ⊗ 1 and B → A ⊗R B, b 7→ 1 ⊗ b are
morphisms of DG R-algebras.

Now if r := (r1, . . . , rn) is a sequence of elements in R, set

K(r) = K(r1)⊗R · · · ⊗R K(rn)

= ΛR(

n⊕
i=1

Rei), |ei| = −1, ∂K(r)(ei) = ri.

K(r) enfolds as

K(r) := 0 // Re1 ∧ · · · ∧ en // . . . //
⊕

i,j Rei ∧ ej //
⊕

iRei
// 0 .

−n −1 0

2.2. A DG R-algebra is graded commutative if ab = (−1)|a||b|ba for all homoge-
neous a, b ∈ A. Note that if the degree of a ∈ A is odd, then 2a2 = 0. The graded
commutative DG R-algebra A is strictly graded commutative if a2 = 0 for all homo-
geneous a ∈ A of odd degree. Note that if A = Aeven, then graded commutativity
is the same as strict graded commutativity. Moreover, if A and B are (strictly)
graded commutative it follows that A⊗R B is (strictly) graded commutative.

Example 2.3. K(r1, . . . , rn) is strictly graded commutative.

Let A be a DG R-algebra. A twisting cochain in A is an element α ∈ A1 such
that

(1) ∂A(α) = α2,
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(2) αa = (−1)|a|aα for all homogeneous a ∈ A.

Let α be a twisting cochain. Let M be a DG A-module. The complex

Mα = (M \, ∂M + α·)
delivers a DG A-module Mα. In cash, its differential is given by

∂M
α

(m) = ∂M (m) + αm, m ∈M.

2.2. The derived category of DG modules. Let A be a DG R-algebra and
M a DG A-module. Then H∗(A) is a graded R-algebra and H∗(M) is a graded
H∗(A)-module.

A morphism f : M → N of DG A-modules (i.e. a morphism of graded A-
modules which commutes with the differentials) is a quasi-isomorphism if H∗(f) :
H∗(M)→ H∗(N) is an isomorphism. Then

D(A) := (DG A-modules)[quasi-iso−1]

is the derived category of DG A-modules. Its suspension is given as follows.
If M is a DG A-module, denote by ΣM the DG A-module whose underlying

graded A-module is given by

ΣM i = M i+1, i ∈ Z,
with A acting via

a ? m := (−1)|a|am, a ∈ A, m ∈M homogeneous.

The differential is ∂ΣM = −∂M . ΣM is the suspension of M . We obtain a functor
Σ(?) being an equivalence of categories and delivering an automorphism of D(A)
which we are also going to denote by Σ. Define Σi+1M = Σ(ΣiM), i ∈ Z.

We go back to our leading example, namely the group algebra of E = (Z/p)r:

kE =
k[z1, . . . , zr]

(zp1 , . . . , z
p
r )

.

Let K be the Koszul DG algebra on z1, . . . , zr, i.e.

K = ΛkE(

r⊕
i=1

kEei), |ei| = −1, ∂K(ei) = zi.

Evidently: ∂K(zp−1
i ei) = zp−1

i zi = zp = 0. It is a fact, that

H−1(K) =

r⊕
i=1

k[zp−1
i ei]

and
H∗(K) = Λk(Σ(H−1(K))).

This is the crucial property of the Koszul DG algebra of kE.

2.4. Set S := k[y1, . . . , yr], |yi| = 2 for i = 1, . . . , r. We view S as a DG algebra
with ∂S = 0. Set A := K ⊗k S which is a DG k-algebra being strictly graded
commutative. Put

α :=

r∑
i=1

zp−1
i ei ⊗ yi ∈ A1.
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One observes that

∂A(α) =

r∑
i=1

∂K(zp−1
i ei)⊗ yi = 0 = α2.

Therefore α is a twisting cochain. Denote by S∗ the DG S-module

(S∗)\ = Homk(S, k), ∂S
∗

= 0.

Then K ⊗k S∗ is a DG A-module. Set

X := (K ⊗k S∗)α.

Example 2.5. Consider the case r = 1. Then S = k[y] with |y| = 2. We have that
S = k[y−1] and the S-module structure is given by y.y−j = y−j+1 if j ≥ 1, y.1 = 0.

Remember that the Koszul DG algebra of kE = k(z)/(zp) on z looks as follows:

0 // kE
z· // kE // 0 .

−1 0

One may think of X as

· · · // kEey−1 // kEy−1 // kEe // kE // 0 .

−3 −2 −1 0

2.6. There is a natural map ε : X → k that is k-linear. Note the following two
useful facts.

(1) ε is a quasi-isomorphism. Hence X is exact in every degree different from
zero.

(2) Xi is a free kE-module for all i ≤ 0 and Xi = 0 for i > 0, that is X is a
free resolution of k over kE with augmentation given by ε.

The assignment

Mod(kE) 3 M 7→ HomkE(X,M) ∈ Mod(S)

induces an exact functor
D(kE)→ D(S).

Theorem 2.7 (Avramov, Buchweitz, I., Miller). The above functor induces an
exact functor

F : Df (kE)→ Df (S)

such that

F (kE) = k and F (k) =

r⊕
i=0

Σ−iS(ri).

Here we used the following notation:

Df (kE) := {M ∈ D(kE) | H∗(M) finitely generated as a kE-module},

Df (S) := {N ∈ D(S) | H∗(S) finitely generated as a S-module}.

Remark 2.8. (1) H∗(F (M)) ∼= Ext∗kE(k,M) and S ⊆ Ext∗kE(k, k) ∼= F (k) as
S-modules.
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(2) F is faithful on objects, but not on maps.
(3) F gives rise to the following commutative diagram:

thickkE(kE)

⊆
��

F // thickS(k)

⊆
��

Df (kE)

����

F // Df (S)

����

stmod(kE)
’F ’ // Diff(Pr−1)

where Diff(Pr−1) is the category of differential sheaves on Pr−1. The cate-
gories thickkE(kE) and thickS(k) will be constructed in lecture 3.

Lecture 3

Let k be a field with char(k) = p ≥ 0, let R = kE, E = (Z/p)r, as before and
put

S := k[y1, . . . , yr], |yi| = 2, ∂S = 0.

3.1. Let M be a R-module. The Loewy length of M is

``R(M) := inf{n ≥ 0 | (z)nM = 0}.
Note that if ` := ``R(M), we obtain a filtration

0 = (z)`M ( (z)`−1M ( · · · ( (z)M (M

where each subquotient
(z)iM

(z)i+1M
, 0 ≤ i ≤ `− 1,

is a k-vector space. Note that ``R(M) ≤ ``R(R) <∞.

Theorem 3.2. For a given a perfect complex P • over R, that is a complex

0→ P s → · · · → P t → 0

with P i a finitely generated projective R-module (s ≤ i ≤ t), with H∗(P •) 6= 0, one
has that ∑

i∈Z
``R(Hi(P •)) ≥ r + 1.

We are going to prove this theorem. Beforehand, we will discuss some applica-
tions and introduce further notation.

3.3. Suppose that E acts freely on a topological space X. Then the associated
complex c∗(X, k) is a perfect one. Therefore, by the theorem,∑

i∈Z
``kE(Hi(X, k)) ≥ r + 1.

In particular, if the E-action on Hi(X, k) is trivial, then

#{i | Hi(X, k) 6= 0} ≥ r + 1.

From this we deduce that (Z/2)r cannot act freely on Sn for r ≥ 2.
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3.4. For the moment, put

R :=
k[[z1, . . . , zc]]

(f1, . . . , fc)
,

where f1, . . . , fc is a regular sequence (for example: fi = zdii for some di ≥ 1).
Theorem 3.2 extends to such rings. In particular, ``R(R) ≥ c+ 1 holds, so (z)c 6= 0
in R, i.e. (z)c * (f1, . . . , fc) in k[[z1, . . . , zc]].

Compare this to the New Intersection Theorem: If Λ is a local ring and P • a
perfect complex over Λ with 0 < length(H∗(P •)) < ∞, then (t − s) ≥ Kdim(Λ).
Here s ≤ t are integers such that P i = 0 for i /∈ {s, s+ 1, . . . , t}.

3.5. Let us recall some further constructions on DG algebras and DG modules.
Let A be a DG algebra.

(1) Remember, that the direct sum of two DG A-modules becomes a DG A-
module in the obvious way.

(2) The mapping cone Cone(f) of a DG A-module homomorphism f : M → N
is a DG A-module such that the natural sequence

0→ N → Cone(f)→ ΣM → 0

is an exact sequence of DG A-modules.
Mapping cones define the exact triangles in D(A), i.e.

∆ : L
f−→M → N → ΣL,

where N is the mapping cone of f (up to an isomorphism in D(A)).

3.1. Thickenings. Let A be a DG algebra und C a DG A-module. Consider the
following sequence

thick0
A(C) ⊆ thick1

A(C) ⊆ thick2
A(C) ⊆ · · · ⊆

⋃
n≥1

thicknA(C) =: thickA(C)

of full subcategories of D(A).

• thick0
A(C) = {0}.

• M ∈ D(A) lies in thick1
A(C) if and only if M is a direct summand of

t⊕
i=1

ΣiCbi

for some integers t, b1, . . . , bt ≥ 1.
• Let n ≥ 2. M ∈ D(A) lies in thicknA(C) if and only if there is an exact

triangle

∆ : N
f−→ L→M ⊕M ′ → ΣN

in D(A) such that N ∈ thick1
A(C) and L ∈ thickn−1

A (C).

The DG A-modules in thickA(C) are those, that can be build out of C. Let Λ be
any ring, i.e. a DG algebra concentrated in degree zero. Then thickΛ(Λ) computes
as follows.

• thick1
Λ(Λ) = finitely generated graded projective Λ-modules, i.e. complexes

of finitely generated Λ-modules with zero differential.
• thick2

Λ(Λ) = {Cone(P → Q) | P,Q ∈ thick1
Λ(Λ)}.
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• In general: thick1
Λ(Λ) = perfect complexes of Λ-modules. In fact, M ∈

thicknΛ(Λ) if and only if M is isomorphic (in D(Λ)) to a complex P • that
admits a filtration by subcomplexes

0 = P •(0) ⊆ P •(1) ⊆ · · ·P •(n− 1) ⊆ P •(n) = P •

such that the subquotients

P •(i+ 1)

P •(i)
, 0 ≤ i ≤ n− 1,

are finitely generated graded projectives.

Definition 3.6. Let A be a DG algebra. A DG A-module M is perfect if M ∈
thickA(A).

Remark 3.7. If A is noetherian, then thickA(A) ⊆ D(A). Equality holds if and only
if A is regular, i.e. gldim(A) <∞.

3.2. Levels. Let A be a DG algebra and C,M ∈ D(A). In case M ∈ thickA(C),
set

levelCA(M) := inf{n ≥ 0 |M ∈ thicknA(C)}.
If M /∈ thickA(C), put levelCA(M) := ∞. Observe that, if F : D(A) → D(B) is an
exact functor, where B is a DG algebra, then

levelCA(M) ≥ level
F (C)
B (F (M)).

Remark 3.8. If H∗(A) is noetherian and H∗(M) is a finitely generated H∗(A)-

module, then 1 + gldim(H∗(A)) ≥ levelAA(M). In particular,

r + 1 ≥ levelSS(M)

for any M ∈ Df (S). Hence thick(S) = Df (S).

3.9. Now let R be kE again (or any local ring with residue field k). Let M be a
finitely generated R-module and ` = ``R(M). Recall that there is a filtration

0 = (z)`M ( (z)`−1M ( · · · ( (z)M (M

where each subquotient

(z)iM

(z)i+1M
, 0 ≤ i ≤ `− 1,

is a k-vector space, i.e. in thick1
R(k). Hence levelkR(M) ≤ ``R(M) (in fact, equality

holds). More generally,

levelkR(M) ≤
∑
i∈Z

``R(Hi(M)), M ∈ Df (R).

We have established all necessary results and notation to prove Theorem 3.2.

Proof of Theorem 3.2. If P • is a perfect complex, then P • ∈ thickR(R). Therefore
F (P •) ∈ thickS(F (R)) = thickS(k). Combining this with the faithfulness of F , we
get

0 < lengthSH
∗(F (P •)) <∞
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Moreover,∑
i∈Z

``RH
i(P •) ≥ levelkR(P •)

≥ level
F (k)
S (F (P •))

= levelSS(F (P •)) (for thick1
S(F (k)) = thick1

S(S))

≥ Kdim(S) + 1,

where the last inequality uses the DG algebra version of the New Intersection
Theorem stated after the proof. �

Theorem 3.10. If S is a DG algebra such that ∂S = 0 and S is commutative and
noetherian containing a field, then for any DG S-module M one has

levelSS(M) ≥ Kdim(S) + 1

Lecture 4

Let k be a field with char(k) = p ≥ 0. As usual, let

R :=
k[z1, . . . , zr]

(zp1 , . . . , z
p
r )
,

S := k[y1, . . . , yr], |yi| = 2, ∂S = 0.

Let K(z) be the Koszul DG algebra on z = (z1, . . . , zr). For any R-module or
complex M over R put K(z;M) := K(z) ⊗R M . Using this, F may be expressed
as

F (M) = (S ⊗k K(z;M))α, α =

r∑
i=1

yi ⊗ zp−1
i ei (M ∈ Df (R)).

It is a fact that F admits a left adjoint G:

Df (R)

F

��

Df (S)

X⊗L
S?=:G

OO

Theorem 4.1. (1) GF (M) = K(z;M) for all M ∈ Df (R).

(2) FG(N) =
⊕r

i=0 Σ−iN(nr) for all N ∈ Df (S).

Corollary 4.2. (1) thickR(M) = thickR(GF (M)) for all M ∈ Df (R).
(2) thickS(N) = thickS(FG(N)) for all N ∈ Df (S).

Proof. The proof of (2) is clear. Main fact used for (1):

thickR(R) = thickR(K(z)),

where the inclusion ⊇ is easy (K(z) is perfect over R), while ⊆ is not. It follows,
that

thickR(M) = thickR(K(z)⊗RM).

�
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4.3. The corollary delivers the bijection in the top row of the following diagram:{
Thick subcategories

of Df (R)

}
oo ∼ //

{
Thick subcategories

of Df (S)

}

{
Specialization closed
subsets of Spec(S)

}��

∼

OO

''

∼

gg

where the vertical bijection is due to Hopkins and Benson-I.-Krause. This recovers
a result by Benson-Carlson-Rickhard represented by the dashed arrow.

4.1. Supports. From now on, assume that k = k. By Hilbert’s Nullstellensatz,
we know that the maximal ideals of S are in one-to-one correspondence to Ar. Let
I ⊆ S be a homogeneous ideal. Then V (I) is a cone in Ar. For a ∈ Ar, let `a be
the line through 0 and a inside Ar. We have that

a ∈ Ar lies in V (I) ⇐⇒ `a ∩ V (I) 6= {0}.

This may be expressed algebraically. For a ∈ Ar, consider

πa : S = k[y1, . . . , yr]→ k[y], yi 7→ aiy.

Then, a ∈ V (I) if and only if dimk(k[y]a ⊗S S/I) = ∞. Here k[y]a denotes k[y]
with S-module structure coming from πa.

Definition 4.4. Let M ∈ D(R). Set

VR(M) := {a ∈ Ar | dimkH
∗(k[y]⊗S F (M)) =∞}.

Theorem 4.5 (Avramov). Fix a ∈ Ar \ {0}. Consider the canonical map

Ra :=
k[z1, . . . , zr]

(a1z
p
1 + · · ·+ arz

p
r )
−→ k[z1, . . . , zr]

(zp1 , . . . , z
p
r )

= R.

Then for any M ∈ Df (R) one has:

a ∈ VR(M) ⇐⇒ M ↓Ra /∈ thickRa(Ra) (i.e. pdRa(M ↓Ra) =∞)

Proof.

a ∈ VR(M)⇐⇒ dimkH
∗(k[y]a ⊗S (S ⊗k K(z;M))α) =∞

⇐⇒ dimkH
∗(k[y]⊗k K(z;M)αa) =∞,

where

αa :=

r∑
i=1

aiy ⊗ zp−1
i ei = y ⊗

r∑
i=1

aiz
p−1
i ei ∈ (k[y]⊗K(z;M))1.
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There is a functor fa : Df (Ra) → Df (k[y]) defined similarly to F . It fits into the
diagram

Df (R)

��

F // Df (S)

k[y]a⊗L
S?

��

Df (Ra)
fa

// Df (k[y])

and fulfills (k[y]⊗k K(z;M))αa = fa(M ↓Ra). We conclude:

a ∈ VR(M)⇐⇒ fa(M ↓Ra) /∈ thickk[y](k)

⇐⇒M ↓Ra /∈ thickRa(Ra).

�

4.6. Assume that char(k) = p > 0 and let a ∈ Ar. We have the following commu-
tative diagram:

k[a1z1 + · · ·+ arzr]
⊆

polynomial extension
//

����

k[z1, . . . , zr]

����
k[a1z1+···+arzr]
(a1z1+···+arzr)p

⊆

polynomial extension
// k[z1,...,zr]
(ap1z

p
1+···+aprzpr )

Note that ap1z
p
1 + · · ·+ aprz

p
r = (a1z1 + · · ·+ arzr)

p due to p > 0. Moreover, observe
that algebras of the form

k[a1z1 + · · ·+ arzr]

(a1z1 + · · ·+ arzr)p
, a ∈ Ar,

are precisely those that occure as group algebras of cyclic shifted subgroups of E
defined by some given a ∈ Ar.

4.7. Consider the following fact : If R is a commutative ring and M ∈ Df (R[t])
such that H∗(M) is finitely generated over R, then

M ∈ thickR[t](R[t]) ⇐⇒ M ↓R ∈ thickR(R).

Thus,

ap := (ap1, . . . , a
p
r) /∈ VR(M) ⇐⇒ M ↓ k[

∑
i zi]

(
∑
i aizi)

p
is perfect

⇐⇒ M ↓ k[
∑
i zi]

(
∑
i aizi)

p
is projective (for M a module)

meaning that we have recovered Dade’s Lemma.
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