COMMUTATIVE ALGEBRA FOR MODULAR REPRESENTATIONS OF FINITE GROUPS

The following notes have been taken from a lecture series by Srikanth B. Iyengar given during a summer school on Cohomology and Support in Representation Theory which took place in Seattle in 2012.

Notetaker: Reiner Hermann

Lecture 1

The aim of this lecture series is to build up the following connections

1.1. Group representations. Let G be a finite group and let k be a field of characteristic $p \geq 0$. A (k-linear) representation of G is a k-vector space V with a G-action. This is the same as specifying a group homomorphism $G \rightarrow \mathrm{GL}_{k}(V)$. Easy examples are given by the zero-representation (i.e. $V=0$) and the trivial representation of G, that is k with trivial G-action.

If V and W are representations of G, then so is their direct sum $V \oplus W$, namely via the G-action given by $g(v, w):=(g v, g w)(g \in G, v \in V, w \in W)$. A representation $V \neq 0$ of G is indecomposable if $V=V_{1} \oplus V_{2}$ for two representations V_{1}, V_{2} of G, implies that $V_{1}=0$ or $V_{2}=0$.

Fix a finite dimensional representation V of G (i.e. $\operatorname{dim}_{k}(V)<\infty$). One can decompose V as

$$
V=\bigoplus_{i=1}^{n} W_{i}^{e_{i}}
$$

for some integers $e_{i} \geq 1$ and indecomposable representations W_{i} of G with $W_{i} \nsupseteq$ W_{j} for $i \neq j(1 \leq i, j \leq n)$. A theorem of Krull-Remak-Schmidt tells us, that such a decomposition is unique, i.e. the W_{i} and e_{i} are determined by the given representation V.

Theorem 1.1 (Maschke). If $\operatorname{char}(k)$ does not divide $|G|$, then every indecomposable representation of G is a direct summand of the regular representation, that is, it is
a direct summand of the G-representation V_{G} given by the data:

$$
V_{G}:=\bigoplus_{g \in G} k g, \quad h\left(\sum_{g \in G} \lambda_{g} g\right)=\sum_{g \in G} \lambda_{g} h g, \quad h \in G .
$$

Corollary 1.2. If char (k) does not divide $|G|$, then there are only finitely many non-isomorphic indecomposable representations of G.
Example 1.3. Consider the Klein four-group $G=\mathbb{Z} / 2 \times \mathbb{Z} / 2$. Let $\operatorname{char}(k)=2$. Then the trivial representation is not a direct summand of the regular one. This follows from $\operatorname{Ext}_{G}^{1}(k, k) \neq 0$. Moreover, for any even $n \geq 2$ there are infinitely many non-isomorphic indecomposable representations of G having dimension n.
1.2. The group algebra of G. The regular representation V_{G} of G is in fact a k-algebra.
Definition 1.4. The group algebra $k G$ of G is the k-vector space

$$
k G:=\bigoplus_{g \in G} k g\left(=V_{G}\right)
$$

with multiplication induced by the product on G :

$$
\mu: k G \otimes_{k} k G \rightarrow k G, \quad \sum_{g, h \in G} \lambda_{g, h}(g \otimes h) \mapsto \sum_{g, h \in G} \lambda_{g, h} g h .
$$

Note that the unit of $k G$ is the unit of G and that $k G$ is commutative if and only if G is abelian.
Example 1.5. Let $G=\mathbb{Z} / d=\left\langle g \mid g^{d}=1\right\rangle$, then

$$
k G=\frac{k[g]}{\left(g^{d}-1\right)}
$$

More generally,

$$
k\left[\mathbb{Z} / d_{1}^{e_{1}} \times \cdots \times \mathbb{Z} / d_{r}^{e_{r}}\right]=\frac{k\left[g_{1}, \ldots, g_{r}\right]}{\left(g_{1}^{e_{1}}-1, \ldots, g_{r}^{e_{r}}-1\right)} .
$$

Remark 1.6. One should note that

- specifying a group homomorphism $G \rightarrow \operatorname{GL}_{k}(V) \cong \operatorname{Aut}_{k}(V)$ is the same as specifying a k-algebra homomorphism $k G \rightarrow \operatorname{End}_{k}(V)$. This translates to the statement, that, for a k-vector space V, having a G-action on V is the same as having a (left) $k G$-module structure on V.
- the $\operatorname{map} \varepsilon: k G \rightarrow k, \varepsilon(g)=1$, is a k-algebra homomorphism.
1.3. Reduction to elementary abelian p-groups. A p-subgroup E of G is called an elementary abelian p-subgroup if it is isomorphic to a group of the form

$$
\mathbb{Z} / p \times \mathbb{Z} / p \times \cdots \times \mathbb{Z} / p=(\mathbb{Z} / p)^{r}
$$

for some $r \geq 0$. The number r is the rank of the elementary abelian p-subgroup. It is known, that many properties of a given $k G$-module can be checked by looking at its $k E$-module structure for every elementary abelian p-subgroup $E \subseteq G$.

Fix a subgroup H of G. The group algebra $k H$ is then a (unital) subalgebra of $k G$. Let M be a $k G$-module. Then

$$
M \downarrow_{H}:=M \text { as a } k H \text {-module via } k H \hookrightarrow k G \text {. }
$$

The motivating theorem is the following.
Theorem 1.7. $A k G$-module M is projective if and only if $M \downarrow_{E}$ is a projective $k E$-module for every elementary abelian p-subgroup $E \subseteq G$.

Let $E=(\mathbb{Z} / p)^{r}=\left\langle g_{1}, \ldots, g_{r} \mid g_{i}^{r}\right\rangle$ and $\operatorname{char}(k)=p>0$. Then

$$
k E=\frac{k\left[g_{1}, \ldots, g_{r}\right]}{\left(g_{1}^{p}-1, \ldots, g_{r}^{p}-1\right)}=\frac{k\left[z_{1}, \ldots, z_{r}\right]}{\left(z_{1}^{p}, \ldots, z_{r}^{p}\right)},
$$

where $z_{i}=g_{i}-1$. For this, note that $(a+b)^{p}=a^{p}+b^{p}$. Suppose $p=2$. Then

$$
k E=\frac{k\left[z_{1}, \ldots, z_{r}\right]}{\left(z_{1}^{2}, \ldots, z_{r}^{2}\right)},
$$

which is a Koszul algebra. By definition, its Koszul dual is given by $\operatorname{Ext}_{k E}^{*}(k, k)=$ $k\left[x_{1}, \ldots, x_{r}\right],\left|x_{i}\right|=1$. J. Moore and S. Priddy showed, that there is an equivalence of categories:

$$
\mathcal{D}^{f}(k E) \rightarrow \mathcal{D}^{f}(k[\underline{x}])
$$

sending k to $k[\underline{x}]$ and $k E$ to k. Here
$\mathcal{D}^{f}(k E):=\left\{X \in \mathcal{D}(k E) \mid H^{*}(X)\right.$ finitely generated as a $k E$-module $\}$,
$\mathcal{D}^{f}(k[\underline{x}]):=$ derived cat. of differential graded $k[\underline{x}]$-modules with f.g. cohomology,
where $k[\underline{x}]$ is viewed as a DG algebra with $\partial^{k[\underline{x}]}=0$. Suppose now that $\operatorname{char}(k) \geq 3$. Then $k E$ is no longer Koszul. Its Koszul dual is given by

$$
\operatorname{Ext}_{k E}^{*}(k, k)=\left(\Lambda_{k} \bigoplus_{i=1}^{r} k x_{i}\right) \otimes_{k} k\left[y_{1}, \ldots, y_{r}\right], \quad\left|y_{i}\right|=2
$$

There is functor

$$
F: \mathcal{D}^{f}(k E) \rightarrow \mathcal{D}^{f}\left(k\left[y_{1}, \ldots, y_{r}\right]\right)
$$

mapping $k E$ to k and k to $\operatorname{Ext}_{k E}^{*}(k, k)$. We are going to construct F in the following lectures.

Lecture 2

As before, let k be a field with $\operatorname{char}(k)=p \geq 0$ and $E:=(\mathbb{Z} / p)^{r}$ for some $r \geq 1$.
2.1. DG modules over DG algebras. Let R be a commutative ring and let $M=\left(M, \partial^{M}\right)$ be a complex of R-modules:

$$
\cdots \xrightarrow{\partial^{M}} M^{i-1} \xrightarrow{\partial^{M}} M^{i} \xrightarrow{\partial^{M}} M^{i+1} \xrightarrow{\partial^{M}} \cdots .
$$

Denote by M^{\natural} the underlying graded R-module $\left\{M^{i}\right\}_{i \in \mathbb{Z}}$. For $m \in M^{i}$ let $|m|:=i$ be its degree. By a $D G$ (Differential Graded) R-algebra A, we mean
(1) A is a complex of R-modules.
(2) A^{\natural} is a graded R-algebra.
(3) The above structures satisfy the Leibniz rule:

$$
\partial^{A}(a b)=\partial^{A}(a) b+(-1)^{|a|} a \partial^{A}(b),
$$

where $a, b \in A$ are homogeneous.
Let A be a DG R-algebra. A $D G A$-module M is given as follows.
(1) M is a complex of R-modules.
(2) M^{\natural} is a graded A^{\natural}-module.
(3) The above structures satisfy the Leibniz rule:

$$
\partial^{M}(a m)=\partial^{A}(a) m+(-1)^{|a|} a \partial^{M}(m)
$$

where $a \in A, m \in M$ are homogeneous.
Example 2.1. (1) A graded R-algebra A can be viewed as a DG algebra with $\partial^{A}=0$. Then a DG A-module is a graded A-module $\left\{M^{i}\right\}_{i \in \mathbb{Z}}$ along with R-linear maps $\partial^{M}: M^{i} \rightarrow M^{i+1}, i \in \mathbb{Z}$, such that $\partial^{M} \circ \partial^{M}=0$ and $\partial^{M}(a m)=(-1)^{|a|} a \partial^{M}(m)(a \in A, m \in M$ homogeneous $)$.

If $A=A^{0}$, then a $\mathrm{DG} A$-module is simply a complex of A-modules.
(2) Fix $r \in R$. Consider the Koszul $D G$ algebra $K(r)$ on r :

$$
\begin{aligned}
& K(r):=0 \longrightarrow R \xrightarrow{r} R \longrightarrow \\
& -1 \quad 0
\end{aligned}
$$

This has a canonical structure of a DG R-algebra. An alternative construction is given in terms of the exterior algebra:

$$
K(r):=\Lambda_{R}(R e), \quad|e|=-1, \partial^{K(r)}(e)=r
$$

It is an easy exercise to show that if A and B are $\mathrm{DG} R$-algebras, then the complex $A \otimes_{R} B$ is a DG R-algebra via

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right):=(-1)^{|b|\left|a^{\prime}\right|} a a^{\prime} \otimes b b^{\prime}
$$

The maps $A \rightarrow A \otimes_{R} B, a \mapsto a \otimes 1$ and $B \rightarrow A \otimes_{R} B, b \mapsto 1 \otimes b$ are morphisms of DG R-algebras.

Now if $\underline{r}:=\left(r_{1}, \ldots, r_{n}\right)$ is a sequence of elements in R, set

$$
\begin{aligned}
K(\underline{r}) & =K\left(r_{1}\right) \otimes_{R} \cdots \otimes_{R} K\left(r_{n}\right) \\
& =\Lambda_{R}\left(\bigoplus_{i=1}^{n} R e_{i}\right), \quad\left|e_{i}\right|=-1, \partial^{K(\underline{r})}\left(e_{i}\right)=r_{i} .
\end{aligned}
$$

$K(\underline{r})$ enfolds as

$$
\begin{gathered}
0(\underline{r}):=\quad \longrightarrow R e_{1} \wedge \cdots \wedge e_{n} \longrightarrow \ldots \longrightarrow \bigoplus_{i, j} R e_{i} \wedge e_{j} \longrightarrow \bigoplus_{i} R e_{i} \longrightarrow 0 . \\
-n
\end{gathered}
$$

2.2. A DG R-algebra is graded commutative if $a b=(-1)^{|a||b|} b a$ for all homogeneous $a, b \in A$. Note that if the degree of $a \in A$ is odd, then $2 a^{2}=0$. The graded commutative DG R-algebra A is strictly graded commutative if $a^{2}=0$ for all homogeneous $a \in A$ of odd degree. Note that if $A=A^{\text {even }}$, then graded commutativity is the same as strict graded commutativity. Moreover, if A and B are (strictly) graded commutative it follows that $A \otimes_{R} B$ is (strictly) graded commutative.
Example 2.3. $K\left(r_{1}, \ldots, r_{n}\right)$ is strictly graded commutative.
Let A be a DG R-algebra. A twisting cochain in A is an element $\alpha \in A^{1}$ such that
(1) $\partial^{A}(\alpha)=\alpha^{2}$,
(2) $\alpha a=(-1)^{|a|} a \alpha$ for all homogeneous $a \in A$.

Let α be a twisting cochain. Let M be a DG A-module. The complex

$$
M^{\alpha}=\left(M^{\natural}, \partial^{M}+\alpha \cdot\right)
$$

delivers a $\mathrm{DG} A$-module M^{α}. In cash, its differential is given by

$$
\partial^{M^{\alpha}}(m)=\partial^{M}(m)+\alpha m, \quad m \in M
$$

2.2. The derived category of DG modules. Let A be a DG R-algebra and M a DG A-module. Then $H^{*}(A)$ is a graded R-algebra and $H^{*}(M)$ is a graded $H^{*}(A)$-module.

A morphism $f: M \rightarrow N$ of DG A-modules (i.e. a morphism of graded A modules which commutes with the differentials) is a quasi-isomorphism if $H^{*}(f)$: $H^{*}(M) \rightarrow H^{*}(N)$ is an isomorphism. Then

$$
\mathcal{D}(A):=(\text { DG } A \text {-modules })\left[\text { quasi-iso }^{-1}\right]
$$

is the derived category of $D G A$-modules. Its suspension is given as follows.
If M is a $\mathrm{DG} A$-module, denote by ΣM the $\mathrm{DG} A$-module whose underlying graded A-module is given by

$$
\Sigma M^{i}=M^{i+1}, \quad i \in \mathbb{Z}
$$

with A acting via

$$
a \star m:=(-1)^{|a|} a m, \quad a \in A, m \in M \text { homogeneous. }
$$

The differential is $\partial^{\Sigma M}=-\partial^{M} . \Sigma M$ is the suspension of M. We obtain a functor $\Sigma(?)$ being an equivalence of categories and delivering an automorphism of $\mathcal{D}(A)$ which we are also going to denote by Σ. Define $\Sigma^{i+1} M=\Sigma\left(\Sigma^{i} M\right), i \in \mathbb{Z}$.

We go back to our leading example, namely the group algebra of $E=(\mathbb{Z} / p)^{r}$:

$$
k E=\frac{k\left[z_{1}, \ldots, z_{r}\right]}{\left(z_{1}^{p}, \ldots, z_{r}^{p}\right)}
$$

Let K be the Koszul DG algebra on z_{1}, \ldots, z_{r}, i.e.

$$
K=\Lambda_{k E}\left(\bigoplus_{i=1}^{r} k E e_{i}\right), \quad\left|e_{i}\right|=-1, \partial^{K}\left(e_{i}\right)=z_{i}
$$

Evidently: $\partial^{K}\left(z_{i}^{p-1} e_{i}\right)=z_{i}^{p-1} z_{i}=z^{p}=0$. It is a fact, that

$$
H^{-1}(K)=\bigoplus_{i=1}^{r} k\left[z_{i}^{p-1} e_{i}\right]
$$

and

$$
H^{*}(K)=\Lambda_{k}\left(\Sigma\left(H^{-1}(K)\right)\right)
$$

This is the crucial property of the Koszul DG algebra of $k E$.
2.4. Set $S:=k\left[y_{1}, \ldots, y_{r}\right],\left|y_{i}\right|=2$ for $i=1, \ldots, r$. We view S as a DG algebra with $\partial^{S}=0$. Set $A:=K \otimes_{k} S$ which is a DG k-algebra being strictly graded commutative. Put

$$
\alpha:=\sum_{i=1}^{r} z_{i}^{p-1} e_{i} \otimes y_{i} \in A^{1}
$$

One observes that

$$
\partial^{A}(\alpha)=\sum_{i=1}^{r} \partial^{K}\left(z_{i}^{p-1} e_{i}\right) \otimes y_{i}=0=\alpha^{2}
$$

Therefore α is a twisting cochain. Denote by S^{*} the DG S-module

$$
\left(S^{*}\right)^{\natural}=\operatorname{Hom}_{k}(S, k), \quad \partial^{S^{*}}=0
$$

Then $K \otimes_{k} S^{*}$ is a DG A-module. Set

$$
X:=\left(K \otimes_{k} S^{*}\right)^{\alpha}
$$

Example 2.5. Consider the case $r=1$. Then $S=k[y]$ with $|y|=2$. We have that $S=k\left[y^{-1}\right]$ and the S-module structure is given by $y . y^{-j}=y^{-j+1}$ if $j \geq 1, y .1=0$.

Remember that the Koszul DG algebra of $k E=k(z) /\left(z^{p}\right)$ on z looks as follows:

$$
\begin{array}{cc}
0 \longrightarrow & k E \xrightarrow{z} \\
-1 & \\
-1 & 0
\end{array}
$$

One may think of X as

$$
\begin{array}{cccc}
\cdots \longrightarrow k E e y^{-1} \longrightarrow k E y^{-1} \longrightarrow k E e \longrightarrow \\
-3 & -2 & -1 & 0
\end{array}
$$

2.6. There is a natural map $\varepsilon: X \rightarrow k$ that is k-linear. Note the following two useful facts.
(1) ε is a quasi-isomorphism. Hence X is exact in every degree different from zero.
(2) X^{i} is a free $k E$-module for all $i \leq 0$ and $X^{i}=0$ for $i>0$, that is X is a free resolution of k over $k E$ with augmentation given by ε.
The assignment

$$
\operatorname{Mod}(k E) \ni M \mapsto \operatorname{Hom}_{k E}(X, M) \in \operatorname{Mod}(S)
$$

induces an exact functor

$$
\mathcal{D}(k E) \rightarrow \mathcal{D}(S)
$$

Theorem 2.7 (Avramov, Buchweitz, I., Miller). The above functor induces an exact functor

$$
F: \mathcal{D}^{f}(k E) \rightarrow \mathcal{D}^{f}(S)
$$

such that

$$
F(k E)=k \quad \text { and } \quad F(k)=\bigoplus_{i=0}^{r} \Sigma^{-i} S^{\binom{r}{i} .}
$$

Here we used the following notation:

$$
\begin{aligned}
\mathcal{D}^{f}(k E) & :=\left\{M \in \mathcal{D}(k E) \mid H^{*}(M) \text { finitely generated as a } k E \text {-module }\right\} \\
\mathcal{D}^{f}(S) & :=\left\{N \in \mathcal{D}(S) \mid H^{*}(S) \text { finitely generated as a } S \text {-module }\right\}
\end{aligned}
$$

Remark 2.8. (1) $H^{*}(F(M)) \cong \operatorname{Ext}_{k E}^{*}(k, M)$ and $S \subseteq \operatorname{Ext}_{k E}^{*}(k, k) \cong F(k)$ as S-modules.
(2) F is faithful on objects, but not on maps.
(3) F gives rise to the following commutative diagram:

where $\operatorname{Diff}\left(\mathbb{P}^{r-1}\right)$ is the category of differential sheaves on \mathbb{P}^{r-1}. The categories thick ${ }_{k E}(k E)$ and $\operatorname{thick}_{S}(k)$ will be constructed in lecture 3.

Lecture 3

Let k be a field with $\operatorname{char}(k)=p \geq 0$, let $R=k E, E=(\mathbb{Z} / p)^{r}$, as before and put

$$
S:=k\left[y_{1}, \ldots, y_{r}\right], \quad\left|y_{i}\right|=2, \quad \partial^{S}=0
$$

3.1. Let M be a R-module. The Loewy length of M is

$$
\ell \ell_{R}(M):=\inf \left\{n \geq 0 \mid(\underline{z})^{n} M=0\right\}
$$

Note that if $\ell:=\ell \ell_{R}(M)$, we obtain a filtration

$$
0=(\underline{z})^{\ell} M \subsetneq(\underline{z})^{\ell-1} M \subsetneq \cdots \subsetneq(\underline{z}) M \subsetneq M
$$

where each subquotient

$$
\frac{(\underline{z})^{i} M}{(\underline{z})^{i+1} M}, \quad 0 \leq i \leq \ell-1
$$

is a k-vector space. Note that $\ell \ell_{R}(M) \leq \ell \ell_{R}(R)<\infty$.
Theorem 3.2. For a given a perfect complex P^{\bullet} over R, that is a complex

$$
0 \rightarrow P^{s} \rightarrow \cdots \rightarrow P^{t} \rightarrow 0
$$

with P^{i} a finitely generated projective R-module $(s \leq i \leq t)$, with $H^{*}\left(P^{\bullet}\right) \neq 0$, one has that

$$
\sum_{i \in \mathbb{Z}} \ell \ell_{R}\left(H^{i}\left(P^{\bullet}\right)\right) \geq r+1
$$

We are going to prove this theorem. Beforehand, we will discuss some applications and introduce further notation.
3.3. Suppose that E acts freely on a topological space X. Then the associated complex $c_{*}(X, k)$ is a perfect one. Therefore, by the theorem,

$$
\sum_{i \in \mathbb{Z}} \ell \ell_{k E}\left(H_{i}(X, k)\right) \geq r+1
$$

In particular, if the E-action on $H_{i}(X, k)$ is trivial, then

$$
\#\left\{i \mid H_{i}(X, k) \neq 0\right\} \geq r+1
$$

From this we deduce that $(\mathbb{Z} / 2)^{r}$ cannot act freely on S^{n} for $r \geq 2$.
3.4. For the moment, put

$$
R:=\frac{k \llbracket z_{1}, \ldots, z_{c} \rrbracket}{\left(f_{1}, \ldots, f_{c}\right)},
$$

where f_{1}, \ldots, f_{c} is a regular sequence (for example: $f_{i}=z_{i}^{d_{i}}$ for some $d_{i} \geq 1$). Theorem 3.2 extends to such rings. In particular, $\ell \ell_{R}(R) \geq c+1$ holds, so $(\underline{z})^{c} \neq 0$ in R, i.e. $(\underline{z})^{c} \nsubseteq\left(f_{1}, \ldots, f_{c}\right)$ in $k \llbracket z_{1}, \ldots, z_{c} \rrbracket$.

Compare this to the New Intersection Theorem: If Λ is a local ring and P^{\bullet} a perfect complex over Λ with $0<\operatorname{length}\left(H^{*}\left(P^{\bullet}\right)\right)<\infty$, then $(t-s) \geq \operatorname{Kdim}(\Lambda)$. Here $s \leq t$ are integers such that $P^{i}=0$ for $i \notin\{s, s+1, \ldots, t\}$.
3.5. Let us recall some further constructions on $D G$ algebras and $D G$ modules. Let A be a DG algebra.
(1) Remember, that the direct sum of two DG A-modules becomes a DG A module in the obvious way.
(2) The mapping cone Cone (f) of a DG A-module homomorphism $f: M \rightarrow N$ is a $\mathrm{DG} A$-module such that the natural sequence

$$
0 \rightarrow N \rightarrow \operatorname{Cone}(f) \rightarrow \Sigma M \rightarrow 0
$$

is an exact sequence of $\mathrm{DG} A$-modules.
Mapping cones define the exact triangles in $\mathcal{D}(A)$, i.e.

$$
\Delta: L \xrightarrow{f} M \rightarrow N \rightarrow \Sigma L,
$$

where N is the mapping cone of f (up to an isomorphism in $\mathcal{D}(A)$).
3.1. Thickenings. Let A be a DG algebra und C a $\mathrm{DG} A$-module. Consider the following sequence

$$
\operatorname{thick}_{A}^{0}(C) \subseteq \operatorname{thick}_{A}^{1}(C) \subseteq \operatorname{thick}_{A}^{2}(C) \subseteq \cdots \subseteq \bigcup_{n \geq 1} \operatorname{thick}_{A}^{n}(C)=: \operatorname{thick}_{A}(C)
$$

of full subcategories of $\mathcal{D}(A)$.

- $\operatorname{thick}_{A}^{0}(C)=\{0\}$.
- $M \in \mathcal{D}(A)$ lies in $\operatorname{thick}{ }_{A}^{1}(C)$ if and only if M is a direct summand of

$$
\bigoplus_{i=1}^{t} \Sigma^{i} C^{b_{i}}
$$

for some integers $t, b_{1}, \ldots, b_{t} \geq 1$.

- Let $n \geq 2 . \quad M \in \mathcal{D}(A)$ lies in $\operatorname{thick}_{A}^{n}(C)$ if and only if there is an exact triangle

$$
\Delta: N \xrightarrow{f} L \rightarrow M \oplus M^{\prime} \rightarrow \Sigma N
$$

in $\mathcal{D}(A)$ such that $N \in \operatorname{thick}_{A}^{1}(C)$ and $L \in \operatorname{thick}_{A}^{n-1}(C)$.
The DG A-modules in $\operatorname{thick}_{A}(C)$ are those, that can be build out of C. Let Λ be any ring, i.e. a DG algebra concentrated in degree zero. Then thick ${ }_{\Lambda}(\Lambda)$ computes as follows.

- $\operatorname{thick}_{\Lambda}^{1}(\Lambda)=$ finitely generated graded projective Λ-modules, i.e. complexes of finitely generated Λ-modules with zero differential.
- $\operatorname{thick}_{\Lambda}^{2}(\Lambda)=\left\{\operatorname{Cone}(P \rightarrow Q) \mid P, Q \in \operatorname{thick}_{\Lambda}^{1}(\Lambda)\right\}$.
- In general: $\operatorname{thick}_{\Lambda}^{1}(\Lambda)=$ perfect complexes of Λ-modules. In fact, $M \in$ $\operatorname{thick}_{\Lambda}^{n}(\Lambda)$ if and only if M is isomorphic (in $\mathcal{D}(\Lambda)$) to a complex P^{\bullet} that admits a filtration by subcomplexes

$$
0=P^{\bullet}(0) \subseteq P^{\bullet}(1) \subseteq \cdots P^{\bullet}(n-1) \subseteq P^{\bullet}(n)=P^{\bullet}
$$

such that the subquotients

$$
\frac{P^{\bullet}(i+1)}{P^{\bullet}(i)}, \quad 0 \leq i \leq n-1
$$

are finitely generated graded projectives.
Definition 3.6. Let A be a DG algebra. A DG A-module M is perfect if $M \in$ thick $_{A}(A)$.

Remark 3.7. If A is noetherian, then $\operatorname{thick}_{A}(A) \subseteq \mathcal{D}(A)$. Equality holds if and only if A is regular, i.e. $\operatorname{gldim}(A)<\infty$.
3.2. Levels. Let A be a DG algebra and $C, M \in \mathcal{D}(A)$. In case $M \in \operatorname{thick}_{A}(C)$, set

$$
\operatorname{level}_{A}^{C}(M):=\inf \left\{n \geq 0 \mid M \in \operatorname{thick}_{A}^{n}(C)\right\}
$$

If $M \notin \operatorname{thick}_{A}(C)$, put level ${ }_{A}^{C}(M):=\infty$. Observe that, if $F: \mathcal{D}(A) \rightarrow \mathcal{D}(B)$ is an exact functor, where B is a DG algebra, then

$$
\operatorname{level}_{A}^{C}(M) \geq \operatorname{level}_{B}^{F(C)}(F(M))
$$

Remark 3.8. If $H^{*}(A)$ is noetherian and $H^{*}(M)$ is a finitely generated $H^{*}(A)$ module, then $1+\operatorname{gldim}\left(H^{*}(A)\right) \geq \operatorname{level}_{A}^{A}(M)$. In particular,

$$
r+1 \geq \operatorname{level}_{S}^{S}(M)
$$

for any $M \in \mathcal{D}^{f}(S)$. Hence $\operatorname{thick}(S)=\mathcal{D}^{f}(S)$.
3.9. Now let R be $k E$ again (or any local ring with residue field k). Let M be a finitely generated R-module and $\ell=\ell \ell_{R}(M)$. Recall that there is a filtration

$$
0=(\underline{z})^{\ell} M \subsetneq(\underline{z})^{\ell-1} M \subsetneq \cdots \subsetneq(\underline{z}) M \subsetneq M
$$

where each subquotient

$$
\frac{(\underline{z})^{i} M}{(\underline{z})^{i+1} M}, \quad 0 \leq i \leq \ell-1,
$$

is a k-vector space, i.e. in $\operatorname{thick}_{R}^{1}(k)$. Hence level ${ }_{R}^{k}(M) \leq \ell \ell_{R}(M)$ (in fact, equality holds). More generally,

$$
\operatorname{level}_{R}^{k}(M) \leq \sum_{i \in \mathbb{Z}} \ell \ell_{R}\left(H^{i}(M)\right), \quad M \in \mathcal{D}^{f}(R)
$$

We have established all necessary results and notation to prove Theorem 3.2,
Proof of Theorem 3.2. If P^{\bullet} is a perfect complex, then $P^{\bullet} \in \operatorname{thick}_{R}(R)$. Therefore $F\left(P^{\bullet}\right) \in \operatorname{thick}_{S}(F(R))=\operatorname{thick}_{S}(k)$. Combining this with the faithfulness of F, we get

$$
0<\text { length }_{S} H^{*}\left(F\left(P^{\bullet}\right)\right)<\infty
$$

Moreover,

$$
\begin{aligned}
\sum_{i \in \mathbb{Z}} \ell \ell_{R} H^{i}\left(P^{\bullet}\right) & \geq \operatorname{level}_{R}^{k}\left(P^{\bullet}\right) \\
& \geq \operatorname{level}_{S}^{F(k)}\left(F\left(P^{\bullet}\right)\right) \\
& =\operatorname{level}_{S}^{S}\left(F\left(P^{\bullet}\right)\right) \quad\left(\text { for }^{\bullet} \operatorname{thick}_{S}^{1}(F(k))=\operatorname{thick}_{S}^{1}(S)\right) \\
& \geq \operatorname{Kdim}(S)+1,
\end{aligned}
$$

where the last inequality uses the DG algebra version of the New Intersection Theorem stated after the proof.

Theorem 3.10. If S is a $D G$ algebra such that $\partial^{S}=0$ and S is commutative and noetherian containing a field, then for any $D G S$-module M one has

$$
\operatorname{level}_{S}^{S}(M) \geq \operatorname{Kdim}(S)+1
$$

Lecture 4

Let k be a field with $\operatorname{char}(k)=p \geq 0$. As usual, let

$$
\begin{gathered}
R:=\frac{k\left[z_{1}, \ldots, z_{r}\right]}{\left(z_{1}^{p}, \ldots, z_{r}^{p}\right)}, \\
S:=k\left[y_{1}, \ldots, y_{r}\right], \quad\left|y_{i}\right|=2, \quad \partial^{S}=0
\end{gathered}
$$

Let $K(\underline{z})$ be the Koszul DG algebra on $\underline{z}=\left(z_{1}, \ldots, z_{r}\right)$. For any R-module or complex M over R put $K(\underline{z} ; M):=K(\underline{z}) \otimes_{R} M$. Using this, F may be expressed as

$$
F(M)=\left(S \otimes_{k} K(\underline{z} ; M)\right)^{\alpha}, \alpha=\sum_{i=1}^{r} y_{i} \otimes z_{i}^{p-1} e_{i} \quad\left(M \in \mathcal{D}^{f}(R)\right)
$$

It is a fact that F admits a left adjoint G :

$$
\begin{array}{r}
\mathcal{D}^{f}(R) \\
x \otimes_{S}^{\mathrm{L}} ?=:\left.G \prod_{\mathcal{D}^{f}(S)}\right|^{\downarrow}{ }^{2} F
\end{array}
$$

Theorem 4.1. (1) $G F(M)=K(\underline{z} ; M)$ for all $M \in \mathcal{D}^{f}(R)$.
(2) $F G(N)=\bigoplus_{i=0}^{r} \Sigma^{-i} N^{\binom{n}{r}}$ for all $N \in \mathcal{D}^{f}(S)$.

Corollary 4.2. (1) $\operatorname{thick}_{R}(M)=\operatorname{thick}_{R}(G F(M))$ for all $M \in \mathcal{D}^{f}(R)$.
(2) $\operatorname{thick}_{S}(N)=\operatorname{thick}_{S}(F G(N))$ for all $N \in \mathcal{D}^{f}(S)$.

Proof. The proof of (2) is clear. Main fact used for (1):

$$
\operatorname{thick}_{R}(R)=\operatorname{thick}_{R}(K(\underline{z}))
$$

where the inclusion \supseteq is easy $(K(\underline{z})$ is perfect over $R)$, while \subseteq is not. It follows, that

$$
\operatorname{thick}_{R}(M)=\operatorname{thick}_{R}\left(K(\underline{z}) \otimes_{R} M\right)
$$

4.3. The corollary delivers the bijection in the top row of the following diagram:

where the vertical bijection is due to Hopkins and Benson-I.-Krause. This recovers a result by Benson-Carlson-Rickhard represented by the dashed arrow.
4.1. Supports. From now on, assume that $k=\bar{k}$. By Hilbert's Nullstellensatz, we know that the maximal ideals of S are in one-to-one correspondence to \mathbb{A}^{r}. Let $I \subseteq S$ be a homogeneous ideal. Then $V(I)$ is a cone in \mathbb{A}^{r}. For $\underline{a} \in \mathbb{A}^{r}$, let $\ell \underline{a}$ be the line through $\underline{0}$ and \underline{a} inside \mathbb{A}^{r}. We have that

$$
\underline{a} \in \mathbb{A}^{r} \text { lies in } V(I) \quad \Longleftrightarrow \quad \ell \underline{a} \cap V(I) \neq\{\underline{0}\} .
$$

This may be expressed algebraically. For $\underline{a} \in \mathbb{A}^{r}$, consider

$$
\pi_{\underline{a}}: S=k\left[y_{1}, \ldots, y_{r}\right] \rightarrow k[y], y_{i} \mapsto a_{i} y
$$

Then, $\underline{a} \in V(I)$ if and only if $\operatorname{dim}_{k}\left(k[y]_{\underline{a}} \otimes_{S} S / I\right)=\infty$. Here $k[y]_{\underline{a}}$ denotes $k[y]$ with S-module structure coming from $\pi_{\underline{a}}$.

Definition 4.4. Let $M \in \mathcal{D}(R)$. Set

$$
V_{R}(M):=\left\{\underline{a} \in \mathbb{A}^{r} \mid \operatorname{dim}_{k} H^{*}\left(k[y] \otimes_{S} F(M)\right)=\infty\right\}
$$

Theorem 4.5 (Avramov). Fix $\underline{a} \in \mathbb{A}^{r} \backslash\{\underline{0}\}$. Consider the canonical map

$$
R \underline{a}:=\frac{k\left[z_{1}, \ldots, z_{r}\right]}{\left(a_{1} z_{1}^{p}+\cdots+a_{r} z_{r}^{p}\right)} \longrightarrow \frac{k\left[z_{1}, \ldots, z_{r}\right]}{\left(z_{1}^{p}, \ldots, z_{r}^{p}\right)}=R .
$$

Then for any $M \in \mathcal{D}^{f}(R)$ one has:

$$
\underline{a} \in V_{R}(M) \quad \Longleftrightarrow \quad M \downarrow_{R \underline{a}} \notin \operatorname{thick}_{R \underline{a}}(R \underline{a}) \quad\left(\text { i.e. } \operatorname{pd}_{R \underline{a}}\left(M \downarrow_{R \underline{a}}\right)=\infty\right)
$$

Proof.

$$
\begin{aligned}
\underline{a} \in V_{R}(M) & \Longleftrightarrow \operatorname{dim}_{k} H^{*}\left(k[y]_{\underline{a}} \otimes_{S}\left(S \otimes_{k} K(\underline{z} ; M)\right)^{\alpha}\right)=\infty \\
& \Longleftrightarrow \operatorname{dim}_{k} H^{*}\left(k[y] \otimes_{k} K(\underline{z} ; M)^{\alpha_{\underline{a}}}\right)=\infty
\end{aligned}
$$

where

$$
\alpha_{\underline{a}}:=\sum_{i=1}^{r} a_{i} y \otimes z_{i}^{p-1} e_{i}=y \otimes \sum_{i=1}^{r} a_{i} z_{i}^{p-1} e_{i} \in(k[y] \otimes K(\underline{z} ; M))^{1} .
$$

There is a functor $f_{\underline{a}}: \mathcal{D}^{f}(R \underline{a}) \rightarrow \mathcal{D}^{f}(k[y])$ defined similarly to F. It fits into the diagram

and fulfills $\left(k[y] \otimes_{k} K(\underline{z} ; M)\right)^{\alpha_{\underline{a}}}=f_{\underline{a}}\left(M \downarrow_{R \underline{a}}\right)$. We conclude:

$$
\begin{aligned}
\underline{a} \in V_{R}(M) & \Longleftrightarrow f_{\underline{a}}\left(M \downarrow_{R \underline{a}}\right) \notin \operatorname{thick}_{k[y]}(k) \\
& \Longleftrightarrow M \downarrow_{R \underline{a}} \notin \operatorname{thick}_{R \underline{a}}(R \underline{a})
\end{aligned}
$$

4.6. Assume that $\operatorname{char}(k)=p>0$ and let $\underline{a} \in \mathbb{A}^{r}$. We have the following commutative diagram:

Note that $a_{1}^{p} z_{1}^{p}+\cdots+a_{r}^{p} z_{r}^{p}=\left(a_{1} z_{1}+\cdots+a_{r} z_{r}\right)^{p}$ due to $p>0$. Moreover, observe that algebras of the form

$$
\frac{k\left[a_{1} z_{1}+\cdots+a_{r} z_{r}\right]}{\left(a_{1} z_{1}+\cdots+a_{r} z_{r}\right)^{p}}, \quad \underline{a} \in \mathbb{A}^{r}
$$

are precisely those that occure as group algebras of cyclic shifted subgroups of E defined by some given $\underline{a} \in \mathbb{A}^{r}$.
4.7. Consider the following fact: If R is a commutative ring and $M \in \mathcal{D}^{f}(R[\underline{t}])$ such that $H^{*}(M)$ is finitely generated over R, then

$$
M \in \operatorname{thick}_{R[\underline{t}]}(R[\underline{t}]) \quad \Longleftrightarrow \quad M \downarrow_{R} \in \operatorname{thick}_{R}(R)
$$

Thus,

$$
\begin{aligned}
\underline{a}^{p}:=\left(a_{1}^{p}, \ldots, a_{r}^{p}\right) \notin V_{R}(M) & \Longleftrightarrow M \downarrow \frac{k\left[\sum_{i} z_{i}\right]}{\left(\sum_{i} a_{i} i_{i}\right)^{p}}
\end{aligned} \text { is perfect } \quad \text { is projective (for } M \text { a module) }
$$

meaning that we have recovered Dade's Lemma.

