
COMMUTATIVE ALGEBRA FOR

MODULAR REPRESENTATIONS OF FINITE GROUPS

SRIKANTH B. IYENGAR

The statements below are all true, I believe. Proving them, or finding counter-
examples if you think they are wrong, is the exercise.

Lecture I

Let k be a field of characteristic p > 0 and G a finite group.

(1) When G := Z/2 and char k = 2 the trivial representation is not a direct sum-
mand of the regular one.

(2) The group algebra kG is self-injective, and hence that a finitely generated kG-
module is projective if and only if it is injective. (This is true for all kG-modules,
and not only finitely generated ones.)

(3) The group algebra kG is a local ring if and only if G is a p-group.

In (4)–(6) assume G is a p-group; even elementary abelian, for simplicity. Set

R := kG and m := the maximal ideal of R.

Note that mi = 0 for i� 0.

(4) The socle of any non-zero R-module is non-zero.
(5) Any R-module M is part of exact sequences

0 −→M1 −→ Rν
ε−−→M −→ 0

0 −→M
ι−−→ Rµ −→M−1 −→ 0

where ν := rankk(M/mM) and µ := rankk(socRM), where socRM is the socle
of M . Thus, ε⊗R k and HomR(k, ι) are isomorphisms, and so

M1 ⊆ mRν and socRM = socR(Rµ) .

The module M1 is the first syzygy of M and M−1 is its first cosyzygy. The
higher syzygies and cosyzygies are defined iteratively.

(6) Let M be a finitely generated R-module. In (b), the map ι is the one above.
(a) If k is not a direct summand of M , then socRM ⊆ mM .
(b) If R is not a direct summand of M , then ι(M) ⊆ mRµ, so socR ·M = 0.

The next series of exercises deals with the Klein four-group, (Z/2)2, over a field
of char 2. Thus

R := k[(Z/2)2] ∼= k[x, y]/(x2, y2) and m := (x, y) .

The aim is to describe the indecomposable R-modules of ranks 1 and 2; compare
this with Questions 3 to 7 in Dave’s lectures.

(7) If M is an indecomposable R-module, and neither R or k, then socRM = mM .
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(8) If M is an indecomposable R-module with rankkM = 2, then it is cyclic and
hence isomorphic to a module of the form

Ma,b := R/(ax+ by) where (a, b) ∈ k2 \ {(0, 0)}
One Ma,b

∼= Ma′,b′ if and only if (a, b) = λ(a′, b′) for a non-zero λ ∈ k. Thus,
the indecomposable modules of rank two are parameterized by P1

k.
(9) Suppose M is an indecomposable module or rank 2n+1, for some integer n ≥ 1.

Then its syzygy module M1 and its cosyzygy module M−1 have odd rank, and
at least one of them has rank strictly less than that of M . It follows that M is
a syzygy or a cosyzygy of k.

Conversely, every syzygy and cosyzygy of k is indecomposable of odd rank;
proving the indecomposability is a bit tricky.
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Lecture II

In this section, k is a commutative ring (nothing much is lost if you wish to
assume k is a field). Our convention is that a graded k-module, say V , will be a
collection {V i}i∈Z of k-modules indexed by Z. The degree of an element v in V
will be denoted |v|. Given a DG (which is an abbreviation of ‘Differential Graded’)
object M , we write M \ for the underlying graded object.

(1) Let A,B be graded k-algebras, and A⊗k B the graded k-algebra, with

(A⊗k B)n :=
⊕
i+j=n

Ai ⊗k Bj and multiplication

(a⊗ b) · (a′ ⊗ b′) := (−1)|b||a
′|aa′ ⊗ bb′

When A and B are (strictly) graded-commutative, so is A⊗k B.
When A and B are DG k-algebras, so is A⊗k B. And if M and N are DG

modules over A and B, respectively, then M ⊗k N is a DG A⊗k B-module.
(2) The exterior algebra, say Λ, on indeterminates ξ1, . . . , ξr all of odd degrees is

the tensor product Λ1 ⊗k · · · ⊗k Λr, where Λi is the exterior algebra on ξi.
This is false without the “signed-multiplication” on the tensor product.

(3) Let r be an element in a commutative ring R and let K be the Koszul complex
on R, viewed as a DG R-algebra. Thus, as a complex of R-modules

K := 0 −→ R
r−−→ R −→ 0

and the multiplication is the obvious one. The data of a DGK-module structure
on a graded R-module M is equivalent to specifying R-linear maps

d : M →M and σ : M →M

of degree +1 and −1, respectively, with the property that d ◦ σ + σ ◦ d = r.
(4) Let A be a DG algebra and α ∈ A1 an element satisfying

d(α) = α2 and α · a = (−1)|a|a · α for all a ∈ A

For any DG A-module M , the graded A\-module M \ with differential

d(m) := dM (m) + α ·m

is also a DG A-module, denoted Mα.
(5) For r = 1 it is easy to check that the morphism ε : X → k, defined in the

lecture, is a quasi-isomorphism. The general case can be settled by taking
tensor products.

(6) Let k be a field and R := k[z1, . . . , zr]/(z
d1
1 , . . . , z

dr
r ) where di ≥ 2 for each i.

For example, R might be the group algebra of an elementary abelian group.
Let K be the Koszul complex on z1, . . . , zr, viewed as a DG algebra. Think
of K as the exterior algebra over R on indeterminates e1, . . . , er of degree −1,
with differential determined by d(ei) = zi and the Leibniz rule.

Claim: H∗(K) is an exterior algebra on the k-vector space H−1(K).

This can be verified as follows: Let Λ be an exterior algebra over k on indeter-
minates ξ1, . . . , ξr of degree −1, viewed as a DG algebra with zero differential.
There is then a morphism of DG R-algebras

Φ: Λ→ K with Φ(ξi) := zdi−1ei .
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This is a quasi-isomorphism: This is easy to check directly for the case r = 1,
and the general case follows by taking tensor products over k.

Note that this argument proves more, namely, that K is quasi-isomorphic,
as a DG algebra to an exterior algebra. This holds true for any complete
intersection local ring R.

(7) Let E = (Z/2)r and let k be a field of characteristic 2. Mimicking the construc-
tion of the functor F from the lecture, one can get an equivalence of categories

Df(kE)
'−−→ Df(k[x1, . . . , xr])

where k[x1, . . . , xr] is a DG algebra with |xi| = 1 and zero differential.
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Lecture III

(1) Let A be a DG k-algebra, and f : M → N a morphism of DG A-modules. The
cone of f (viewed as a morphism of complexes) has a natural structure of a DG
module over A such that the canonical exact sequence

0 −→ N −→ cone(f) −→ ΣM −→ 0

is compatible with the A-action.
(2) Let A be a ring; it may not be commutative. We say that a complex is perfect

if it is isomorphic (in the derived category) to a bounded complex of finitely
generated projective A-modules, that is to say, to one of the form

0 −→ P s −→ · · · −→ P t −→ 0

with each Pn a finitely generated projective A-module. It is not hard to prove
that a complex is perfect, then it is in thick(A); the converse is also true.

A more precise statement is that a complex M of A-modules is in thickn(A),
for some n ≥ 0, if and only if it is isomorphic in D(A) to a complex P with a
filtration by subcomplexes

{0} ⊆ P (0) ⊆ P (1) ⊆ · · · ⊆ P (n) = P

such that P (i)/P (i−1) is a graded projective A-module, with zero differential.
This extends verbatim to the case where A is a DG algebra, except that one
has to allow M to be a direct summand of such a P .

(3) Let R = k[z1, . . . , zr]/(z
p
1 , . . . , z

p
r ), with k a field. A complex M of R-modules

is in thick(k) if and only if H∗(M) has finite length. The same is true over any
(commutative, noetherian) local ring R, and in fact much more generally.

(4) Let E = Z/2 and k a field of characteristic 2. By Exercise 7 in Lecture II (if
you did not do that exercise, this is a good time to do so) there is then an
equivalence of categories

Df(kE)
'−−→ Df(k[x])

where k[x] is a DG algebra with |x| = 1 and zero differential. Think about
the images under this functor of the indecomposable kE-modules (there are
only two), and also of the Koszul complex on z. What are the kE-modules
corresponding to the DG k[x]-modules k[x]/(xn)?

(5) Let now E = (Z/2)2 and k a field of characteristic 2, so kE ∼= k[z1, z2]/(z21 , z
2
2).

There is an equivalence of categories

Df(kE)
'−−→ Df(k[x1, x2])

where k[x1, x2] is a DG algebra with |xi| = 1 and zero differential.
What are the DG k[x1, x2]-modules corresponding to the syzygy modules of

k over kE? It is also worth thinking about the indecomposable modules

M(a1,a2) = k[z1, z2]/(a1z1 + a2z2) for (a1, a2) ∈ k2 .

(6) Think about the analogue of Exercises 4 and 5 for elementary abelian p-groups
with p ≥ 3.
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Lecture IV

Let k be field and set

R := k[z1, . . . , zr]/(z
p
1 , . . . , z

p
r ) .

Thus, R might be the group algebra of an elementary abelian p-group of rank r.

(1) Let K be the Koszul complex on the elements z1, . . . , zr. Then K is evidently
built out of R, in that it is in thick(R); the converse is also true, so thick(K) =
thick(R). One can prove this directly for r = 1 and settle the general case by
taking suitable tensor products.

In fact thick(M) = thick(R) for any perfect complexM withH∗(M) 6= 0; this
is harder to prove, and is a special case of the classification of thick subcategories
of perfect complexes over commutative noetherian rings, due to Mike Hopkins,
and Amnon Neeman.

Henceforth, r = 2 and k is algebraically closed of characteristic p = 2. Thus R
is the group algebra of the Klein four group. For any a = (a1, a2), set

Ra := k[a1z1 + a2z2] ⊂ k[z1, z2] = R

Thus, Ra is the k-subalgebra of R spanned by the linear form a1z1 + a2z2.

(2) The rank variety of an R-module M is the subset of A2(k) defined by

V r
R(M) := {(a1, a2) |M ↓Ra is not projective}

This a closed subset, in the Zariksi topology, of A2(k). Compute the rank
varieties of the syzygy modules of k over R, and of the indecomposable modules

M(a1,a2) = k[z1, z2]/(a1z1 + a2z2) for (a1, a2) ∈ k2 .
(3) As in my lecture, one can associate another variety to M via the equivalence

Df(R)
'−→ Df(k[x1, x2]); this is the support variety of M and denoted VR(M).

Compute the support varieties of the syzygy modules of k over R, and of
the indecomposable modules M(a1,a2) from (2).
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