Announcements

- Assigned reading for the week sections 6.3, Midterm review, 6.4.
- Homework \#4A Due Wednesday, October 26, 11:00pm. You should aim to have completed this portion by Monday evening, October 24.
- Quiz \#3 (taken from HW \#4A) Tuesday, October 25 in TA sections
- Homework \#4B and 4C Due Friday, October 28, 11:00pm
- Midterm \#1 was Yesterday
- Midterms will be returned in Quiz section next Tuesday.
- Solutions will also be distributed.

Today

- 6.4: Work

Work: If an object moves along a straight line with position $s(t)$ then the force F on the object (in the same direction) is defined by Newton's Second Law of Motion

$$
\begin{aligned}
F & =m \frac{d^{2} s}{d t^{2}} \\
\text { Force } & =\text { mass } \times \text { acceleration } \\
(\text { Newton }) & =(\mathrm{kg}) \times\left(\mathrm{m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

When the acceleration is constant so is the force F. We then define the work to be the product of the force F and the distance d that the object moves:

$$
\begin{aligned}
W & =F d \\
\text { work } & =\text { force } \times \text { distance } \\
(\text { Joule }) & =(\text { Newton }) \times(\text { meter })
\end{aligned}
$$

- Careful: Weight is a measurement of force (so there is no need to multiply it by g, the acceleration due to gravity).

Suppose that an object moves along the x - axis in the positive direction, from $x=a$ to $x=b$, and that at each point x between a and b a force $f(x)$ acts on the object, where $f(x)$ is a continuous function. To estimate the work done we divide $[a, b]$ into n-subintervals with end points x_{0}, x_{1}, \ldots, x_{n} and equal width Δx. Choose sample points $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. For large $n, \Delta x$ is small and the values of f in $\left[x_{i-1}, x_{i}\right]$ are very close to $f\left(x_{i}^{*}\right)$. The work W_{i} that is done in moving the particle from x_{i-1} to x_{i} is approximately

$$
W_{i} \sim f\left(x_{i}^{*}\right) \Delta x
$$

Thus the total work done in moving the particle from a to b is approximately

$$
W \sim \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Letting $n \rightarrow \infty$ we have

$$
W=\int_{a}^{b} f(x) d x
$$

Hooke's law

The force required to maintain a spring stretched x units beyond its natural length is proportional to x :

$$
f(x)=k x
$$

$k>0$ is the spring constant.

Example 1: $(6.4 \# 8)$ A spring has natural length 20 cm . If a 25 N force is required to keep it stretched to a length of 30 cm , how much work is required to stretch it from 20 cm to 25 cm ?

Example 2: A circular reservoir has diameter 24 m , the sides are 5 m high, and the depth of the water is 4 m . How much work is required to pump all the water out over the side? (Use the fact that the density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.)

Example 3: A leaky 10 kg bucket is lifted from the ground to a height of 12 m at a constant speed with a rope that weighs $0.8 \mathrm{~kg} / \mathrm{m}$. Initially the bucket contains 36 kg of water, but the water leaks at a constant rate and finishes draining just as the bucket reaches the 12 m level. How much work is done?

