Announcements

- Assigned reading for the week: sections 7.3, 7.4 and 7.5
- Printout and bring the Worksheet "Algebra and Partial Fractions" with you tomorrow to your TA sections
- Homework \#5 (125 HW \# 5ABC, all 3 parts) due Tonight 11:00pm
- Homework \# 6AB Due Wednesday, November 9, 11:00pm (complete before quiz section, Tuesday 11/8)
- Quiz \#5 (from HW \# 5C \& HW \#6AB) Tuesday, November 8 in TA sections
- Extra Practice Problems for integration are available via a link from the Week 6 Outline on the Math 125 Materials page (view this as homework that you should do but do not have to turn in):
http://www.math.washington.edu/~m125/Homeworks/week6ExtraPracticeProbs.pdf

Today

- Finish 7.3 Trigonometric Substitution
- 7.4 Partial Fractions

Trigonometric Substitution

Expression
(Not always " $\sqrt{ }$ ")
$\sqrt{a^{2}-x^{2}}$
$\sqrt{x^{2}-a^{2}}$
$\sqrt{x^{2}+a^{2}}$

Triangle

Substitution

$$
x=a \sin \theta
$$

Expression

$$
\sqrt{a^{2}+x^{2}}
$$

Triangle

Substitution

$$
x=a \tan \theta \quad \text { with } \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2} \quad \Longrightarrow \quad d x=a \sec ^{2} \theta d \theta
$$

Identity

$$
1+\tan ^{2} \theta=\sec ^{2} \theta=\frac{1}{\cos ^{2} \theta}
$$

Useful relationships

$$
\theta=\arctan \left(\frac{x}{a}\right) \quad \cos \theta=\frac{a}{\sqrt{a^{2}+x^{2}}} \quad \sin \theta=\frac{x}{\sqrt{a^{2}+x^{2}}}
$$

Recall Secant Integrals:

$$
\int \sec x d x=\frac{1}{2} \ln \left|\frac{1+\sin x}{1-\sin x}\right|+C
$$

or

$$
\int \sec x d x=\ln |\sec x+\tan x|+C
$$

and

$$
\int \sec ^{3} x d x=\frac{1}{2} \sec x \tan x+\frac{1}{4} \ln \left|\frac{1+\sin x}{1-\sin x}\right|+C
$$

Exercise 1: Compute

$$
\int \frac{d t}{\left(t^{2}-6 t+13\right)^{1 / 2}}
$$

First Complete the Square:

$$
t^{2}-6 t+13=t^{2}-6 t+9+4=(t-3)^{2}+4
$$

Now use the substitution $u=t-3$ so that $d u=d t$, this gives

$$
\int \frac{d t}{\left((t-3)^{2}+4\right)^{1 / 2}}=\int \frac{d u}{\left(u^{2}+4\right)^{1 / 2}} .
$$

Triangle:

So we do the Trig substitution $u=2 \tan \theta$, and therefore $d u=2 \sec ^{2} \theta d \theta=2\left(1+\tan ^{2} \theta\right) d \theta$.

The integral then becomes

$$
\begin{aligned}
\int \frac{2\left(1+\tan ^{2} \theta\right) d \theta}{\left(4 \tan ^{2} \theta+4\right)^{1 / 2}} & =\int \sqrt{1+\tan ^{2} \theta} d \theta \\
& =\int \sec \theta d \theta \\
& =\frac{1}{2} \ln \left|\frac{1+\sin \theta}{1-\sin \theta}\right|+C \\
& =\frac{1}{2} \ln \left|\frac{1+\frac{u}{\sqrt{u^{2}+4}}}{1-\frac{u}{\sqrt{u^{2}+4}}}\right|+C \\
& =\frac{1}{2} \ln \left|\frac{\sqrt{u^{2}+4}+u}{\sqrt{u^{2}+4}-u}\right|+C, \quad \text { so } \\
\int \frac{d t}{\left(t^{2}-6 t+13\right)^{1 / 2}} & =\frac{1}{2} \ln \left|\frac{\sqrt{t^{2}-6 t+13}+(t-3)}{\sqrt{t^{2}-6 t+13}-(t-3)}\right|+C
\end{aligned}
$$

