Announcements

- Assigned reading for the week: sections 7.3, 7.4 and 7.5
- Next Friday, November 11 is Veterans Day - No Classes
- Homework \# 6AB Due Wednesday, November 9, 11:00pm (complete parts A \& B before quiz section, Tuesday $11 / 16$)
- Quiz \#5 (taken from HW \# 5C and HW \#6AB) Tuesday,November 8 in TA sections
- Extra Practice Problems for integration are available via a link from the Week 6 Outline on the Math 125 Materials page (view this as homework that you should do but do not have to turn in):
http://www.math.washington.edu/~m125/Homeworks/week6ExtraPracticeProbs.pdf

Today

- 7.4 Partial Fractions
- 7.5 Strategy for Integration

A rational function is a function such that

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomials, i.e.

$$
\begin{gathered}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \\
Q(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}
\end{gathered}
$$

with $a_{n} \neq 0$ and $b_{m} \neq 0$. The degree of P is n and the degree of Q is m. Notation: $\operatorname{deg}(P)=n$ and $\operatorname{deg} Q=m$. If $\operatorname{deg}(P) \geq \operatorname{deg} Q$ divide P by Q to obtain a remainder R such that $\operatorname{deg}(R)<\operatorname{deg} Q$, i.e.

$$
f(x)=\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}
$$

where R and S are also polynomials.

Steps to integrate a rational function of the form

$$
\frac{R(x)}{Q(x)} \text { with } \operatorname{deg}(R)<\operatorname{deg} Q
$$

Step 1: Factor Q as a product of factors of the form

$$
a x+b
$$

or

$$
a x^{2}+b x+c \text { with } b^{2}-4 a c<0
$$

Step 2: Express $\frac{R(x)}{Q(x)}$ as a sum of partial fractions of the form

$$
\frac{A}{(a x+b)^{j}} \text { or } \frac{A x+B}{\left(a x^{2}+b x+c\right)},
$$

with $b^{2}-4 a c<0$.

Case I: Q is a product of distinct linear factors, i.e.

$$
Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \cdots\left(a_{l} x+b_{l}\right)
$$

then

$$
\begin{equation*}
\frac{R(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\cdots+\frac{A_{l}}{a_{l} x+b_{l}} \tag{1}
\end{equation*}
$$

Case II: Q is a product of linear factors some of which are repeated. Suppose $\left(a_{1} x+b_{1}\right)$ is repeated j_{1} times. Then the term

$$
\frac{A_{1}}{a_{1} x+b_{1}}
$$

in (1) is replaced by

$$
\begin{equation*}
\frac{A_{1,1}}{\left(a_{1} x+b_{1}\right)}+\cdots+\frac{A_{1, j_{1}}}{\left(a_{1} x+b_{1}\right)^{j_{1}}} \tag{2}
\end{equation*}
$$

Case III: Q contains irreducible quadratic factors, none of which is repeated. Then in addition to the terms that appear in (1) and (2) the expression for $\frac{R(x)}{Q(x)}$ will contain a term of the form

$$
\begin{equation*}
\frac{A x+B}{a x^{2}+b x+c} \tag{3}
\end{equation*}
$$

