Announcements

- Assigned reading for the week: sections 7.5, 7.7 and 7.8
- Homework \# 7A \& 7B Due Wednesday, November 16, 11:00pm
- No quiz next week.
- Midterm \# 2, Thursday, November 17 (Covers through section 7.8)
- Start doing practice Midterms (beware: some cover material up to 8.3).
- One 8.5×11 handwritted sheet of notes (both sides)
- You may use any of the 20 integrals from the table on p. 495 without justification. Must show your work in evaluating any other integrals.
- Friday, November 11 is Veterans Day - No Classes.
- See this page for information on the Final Exam (e.g. Official UW conflicts): www.math.washington.edu/Undergrad/groundrules/groundrules124-5aut16.php

Today

- 7.7 Approximate Integration: Simpson's Rule
- 7.8 Improper Integrals: How do you compute the area of unbounded regions?

Approximate Integration: Simpson's Rule

What can you do when you are asked to estimate

$$
\int_{0}^{1} e^{x^{2}} d x \quad \text { or } \quad \int_{0}^{1} \cos \left(x^{3}\right) d x ?
$$

Improper Integrals

How do you compute the area of unbounded regions?

$$
\int_{1}^{\infty} \frac{1}{x^{4}} d x \quad \text { or } \quad \int_{0}^{1} \frac{1}{\sqrt{x}} d x ?
$$

Let f be a continuous function on $[a, b]$. Divide $[a, b]$ into n subintervals of width Δx. Hence

$$
\Delta x=\frac{b-a}{n}
$$

and

$$
\begin{gathered}
x_{0}=a, \quad x_{n}=b \\
x_{i}=x_{i-1}+\Delta x=a+i \Delta x \text { for } 1 \leq i \leq n .
\end{gathered}
$$

Recall

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

where x_{i}^{*} is any sample point in the $i^{\text {th }}$-interval $\left[x_{i-1}, x_{i}\right]$.

Midpoint and Trapezoidal Rule

Midpoint Rule

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \sim \mathbf{M}_{\mathbf{n}} \\
& =\Delta x\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right]
\end{aligned}
$$

where

$$
\bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)
$$

Trapezoidal Rule

Instead of using Rectangles use Trapezoids whose top side is given by the cord between the endpoints x_{i-1} and x_{i} of the $i^{\text {th }}$-interval.

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \sim \mathbf{T}_{\mathbf{n}}=\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \operatorname{Area}\left(\mathrm{T}_{\mathrm{i}}\right) \\
& =\sum_{i=1}^{n} \frac{\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]}{2} \Delta x \\
& =\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

Example 1: Apply the Trapezoidal rule to estimate

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x \quad \text { with } \quad n=4
$$

and compare this with the precise answer.

Simpson's rule (note: this requires n to be even!)

 Replace the linear approximation by a quadratic approximation. Use each subsequent PAIR of intervals to determine the best fitting quadratic equation $\left(y=A x^{2}+B x+C\right)$ between the three points determined by the endpoints and midpoint of the pair. Add up the areas$$
A=\frac{\Delta x}{3}\left[f\left(x_{i-1}\right)+4 f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]
$$

under the graph of this quadratic equation (parabola).

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \sim S_{n} \\
S_{n}=\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots\right. \\
\left.+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{gathered}
$$

Example 2: Use Simpson's rule to estimate

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x \quad \text { with } \quad n=4
$$

and compare this with the precise answer.

