Announcements

- Keep on familiarizing yourself with the class website, the Math 125 Materials Web site and the links you find on those pages.
- The only Calculator you are allowed to use is the Ti-30x IIS.
- Assigned reading for the week sections 4.9, 5.1 and 5.2.
- Homework #1 (125 HW 1ABC, all 3 parts) should be completed by Monday night, October 3, Due Wednesday, October 5, 11:00pm.
- Quiz #1 (taken from HW #1ABC) on Tuesday, October 4 in TA sections.

Today

- 4.9: More on Antiderivatives
- 5.1: Areas and Distances
- 5.2: The definite integral

Definition

A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Theorem

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

Function	Particular antiderivative
$x^n (n eq -1)$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{x}$	$\ln x $
e^{x}	e ^x
cos x	sin x
sin x	$-\cos x$
$\sec^2 x$	tan x
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x = \sin^{-1}(x)$
$\frac{1}{1+x^2}$	$\arctan x = \tan^{-1}(x)$

Example: A car braked with a constant deceleration of 16 ft/s^2 , producing skid marks measuring 200 ft before coming to a stop. How fast was the car traveling when the brakes were first applied?

Example: A car braked with a constant deceleration of 16 ft/s^2 , producing skid marks measuring 200 ft before coming to a stop. How fast was the car traveling when the brakes were first applied?

Deceleration means negative acceleration, so a(t) = -16.

Let's assume t = 0 is the time the car first applies the brakes. Then, since velocity is the antiderivative of acceleration,

$$v(t) = -16t + v_0$$

where v_0 the the speed at which the car is going when the brakes were applied. (Note that $v_0 = v(0)$ is the quantity we are looking for!)

Let s(t) be the position of the car measured from when the brakes are first applied (so that s(0) = 0)

Since position is the antiderivative of velocity, we have

$$s(t) = -8t^2 + v_0t + s_0$$

where $s_0 = s(0) = 0$.

$$s(t)=-8t^2+v_0t.$$

Let t_s be the time the car stops $(v(t_s) = 0)$ then

$$s(t_s) = -8t_s^2 + v_0 t_s = 200.$$

But $v(t_s) = -16t_s + v_0 = 0$ so $v_0 = 16t_s$. Therefore $-8t_s^2 + 16t_s^2 = 8t_s^2 = 200.$

From this we may conclude that $t_s = 5$ sec, and thus

$$v_0 = 16t_s = 16 \times 5 = 80$$
 ft/sec.

Area Problem:

Find the area of the region S bounded by the graph of a continuous function f (where $f(x) \ge 0$), the x-axis and the vertical lines x = a and x = b.

$$S = \{(x, y) : a \le x \le b, \ 0 \le y \le f(x)\}$$

Idea: Divide S into n strips of the same width,

$$\Delta x = \frac{b-a}{n}$$

There is a corresponding division of [a, b] into n subintervals:

$$[x_0, x_1], [x_1, x_2], \cdots, [x_{n-1}, x_n]$$

where

$$\begin{aligned} x_0 &= a, \qquad x_n = b, \\ x_{k+1} &= x_k + \Delta x \ \text{ for } \ 0 \leq k \leq n-1 \end{aligned}$$

Compute R_n and L_n :

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x$$
$$L_n = f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x$$

Definition

The area of the region S bounded by the graph of a non-negative continuous function f, the x-axis and the vertical lines x = a and x = b is

$$A=\lim_{n\to\infty}R_n=\lim_{n\to\infty}L_n.$$

The velocity graph of a car accelerating from rest to a speed of 120 km/h over a period of 30 seconds is shown. Estimate the distance traveled during this period.

