Announcements

- Keep on familiarizing yourself with the class website, the Math 125 Materials Web site and the links you find on those pages.
- The only Calculator you are allowed to use is the Ti-30x IIS.
- Assigned reading for the week sections 4.9, 5.1 and 5.2.
- Homework \#1 (125 HW 1ABC, all 3 parts) should be completed by Monday night, October 3, Due Wednesday, October 5, 11:00pm.
- Quiz \#1 (taken from HW \#1ABC) on Tuesday, October 4 in TA sections.

Today

- 4.9: More on Antiderivatives
- 5.1: Areas and Distances
- 5.2: The definite integral

Definition

A function F is called an antiderivative of f on an interval l if $F^{\prime}(x)=f(x)$ for all x in 1.

Theorem
If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.

Function	Particular antiderivative
$x^{n}(n \neq-1)$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{x}$	$\ln \|x\|$
e^{x}	e^{x}
$\cos x$	$\sin x$
$\sin x$	$-\cos x$
$\sec ^{2} x$	$\tan x$
$\frac{1}{\sqrt{1-x^{2}}}$	$\arcsin x=\sin ^{-1}(x)$
$\frac{1}{1+x^{2}}$	$\arctan x=\tan ^{-1}(x)$

Example: A car braked with a constant deceleration of $16 \mathrm{ft} / \mathrm{s}^{2}$, producing skid marks measuring 200 ft before coming to a stop. How fast was the car traveling when the brakes were first applied?

Example: A car braked with a constant deceleration of $16 \mathrm{ft} / \mathrm{s}^{2}$, producing skid marks measuring 200 ft before coming to a stop. How fast was the car traveling when the brakes were first applied?

Deceleration means negative acceleration, so $a(t)=-16$.
Let's assume $t=0$ is the time the car first applies the brakes. Then, since velocity is the antiderivative of acceleration,

$$
v(t)=-16 t+v_{0}
$$

where v_{0} the the speed at which the car is going when the brakes were applied. (Note that $v_{0}=v(0)$ is the quantity we are looking for!)

Let $s(t)$ be the position of the car measured from when the brakes are first applied (so that $s(0)=0$)

Since position is the antiderivative of velocity, we have

$$
s(t)=-8 t^{2}+v_{0} t+s_{0}
$$

where $s_{0}=s(0)=0$.

So

$$
s(t)=-8 t^{2}+v_{0} t
$$

Let t_{s} be the time the car stops $\left(v\left(t_{s}\right)=0\right)$ then

$$
s\left(t_{s}\right)=-8 t_{s}^{2}+v_{0} t_{s}=200
$$

But $v\left(t_{s}\right)=-16 t_{s}+v_{0}=0$ so $v_{0}=16 t_{s}$. Therefore

$$
-8 t_{s}^{2}+16 t_{s}^{2}=8 t_{s}^{2}=200
$$

From this we may conclude that $t_{s}=5 \mathrm{sec}$, and thus

$$
v_{0}=16 t_{s}=16 \times 5=80 \mathrm{ft} / \mathrm{sec}
$$

Area Problem:

Find the area of the region S bounded by the graph of a continuous function f (where $f(x) \geq 0$), the x-axis and the vertical lines $x=a$ and $x=b$.

$$
S=\{(x, y): a \leq x \leq b, 0 \leq y \leq f(x)\}
$$

Idea: Divide S into n strips of the same width,

$$
\Delta x=\frac{b-a}{n}
$$

There is a corresponding division of $[a, b]$ into n subintervals:

$$
\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \cdots,\left[x_{n-1}, x_{n}\right]
$$

where

$$
\begin{gathered}
x_{0}=a, \quad x_{n}=b, \\
x_{k+1}=x_{k}+\Delta x \quad \text { for } \quad 0 \leq k \leq n-1
\end{gathered}
$$

Compute R_{n} and L_{n} :

$$
\begin{aligned}
& R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x \\
& L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x
\end{aligned}
$$

Definition

The area of the region S bounded by the graph of a non-negative continuous function f, the x-axis and the vertical lines $x=a$ and $x=b$ is

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} L_{n} .
$$

The velocity graph of a car accelerating from rest to a speed of $120 \mathrm{~km} / \mathrm{h}$ over a period of 30 seconds is shown. Estimate the distance traveled during this period.

