Announcements

- This week: 7.8, Midterm Review and 8.1
- Homework \# 7A \& 7B Due Tonight, Wednesday, November 16, 11:00pm
- Homework \# 8A \& 8B Due Wednesday, November 23, 11:00pm
- Midterm \# 2, Thursday, November 17 (Covers through section 7.8)
- One 8.5×11 handwritted sheet of notes (both sides)
- Give Exact Answers! You will lose points if you do not give the exact answer (unless a decimal approximation is asked for).
- Show all of your work! Correct answers without correct justification will not receive full credit.
- The only calculator which may be used is the Ti-30x IIS.
- You may use any of the 20 integrals from the table on p. 495 without justification. Must show your work in evaluating any other integrals. (except $\sec ^{3} x$) even if they are on your note sheet.

Today

- Review L'Hospital's rule
- Review for second Midterm

L'Hospital's rule

Suppose that f and g are differentiable and that $g^{\prime}(x) \neq 0$ near a (except possibly at a).
Suppose that

$$
\lim _{x \rightarrow a} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=0
$$

or that

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

(In other words we have an indeterminate form of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.)

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the limit on the right side exists or is ∞ or $-\infty$.
(1) Compute the following definite integrals:

- $\int_{0}^{1}\left(x^{2}+1\right) e^{-x} d x$
- $\int_{0}^{3 \pi^{2}} \cos \sqrt{x+\pi^{2}} d x$
(2) Compute the following indefinite integrals:
- $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$
- $\int \frac{x^{3}}{x^{2}+x+\frac{1}{2}} d x$
(1) The portion of the graph $y=e^{x}$ between $x=0$ and $x=\ln 5$ is rotated about the y-axis to form a container. The container is filled with water. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$, and the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Write an integral that computes the work required to pump all the water up out of the tank. Do not evaluate the integral.
(b) Use Simpson's rule with $n=4$ to approximate the work above.

