Announcements

- This week: 7.8, Midterm Review and 8.1
- Homework \# 8A \& 8B Due Wednesday, November 23, 11:00pm
- No Quiz next Tuesday!
- Midterm \# 2 will be returned in Quiz sections on Tuesday, November 22
- Next week we will focus on 8.3 Center of Mass

Today

- 8.1 Arc Length: What does length of a curve mean? How do you compute it?

The arc length formula

If f^{\prime} is continuous on $[a, b]$, then the length of the curve $\{(x, y): a \leq x \leq b, y=f(x)\}$, is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

or

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

If g^{\prime} is continuous on $[c, d]$, then the length of the curve $\{(x, y): c \leq y \leq d, x=g(y)\}$, is

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

or

$$
L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

The arc length function s of the curve

$$
C=\{(x, y): a \leq x \leq b, y=f(x)\}
$$

is the distance along the curve C from the initial point $P_{0}=(a, f(a))$ to $Q=(x, f(x))$, i.e.

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

By the FTC

$$
\frac{d s}{d x}=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

Thus

$$
\begin{equation*}
(d s)^{2}=(d x)^{2}+(d y)^{2} \tag{1}
\end{equation*}
$$

Symbolically

$$
L=\int d s
$$

If the curve C is given parametrically by $C=\left\{(x(t), y(t)): t_{0} \leq t \leq t_{1}\right\}$, then (1) becomes

$$
\left(\frac{d s}{d t}\right)^{2}=\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}
$$

and

$$
\frac{d s}{d t}=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}
$$

In this case

$$
L=\int_{t_{0}}^{t_{1}} \frac{d s}{d t} d t=\int_{t_{0}}^{t_{1}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

Problem A (Seattle) Seahawk flying at 15 meters per second at an altitude of 180 meters accidentally drops its prey. The parabolic trajectory of the falling prey is described by the equation

$$
y=180-\frac{x^{2}}{45}
$$

until it hits the ground. Here y is the height above the ground and x the horizontal distance traveled in meters. Calculate the distance traveled by the prey from the time it is dropped until the time it hits the ground.

