Announcements

- This week 9.1 (Introduction to Differential Equations), 9.3 (Separable Equations)
- Homework \# 9A (Center of Mass) \& 9B (Separable differential equations) Due Wednesday, November 30, 11:00pm
- Quiz Tomorrow. Tuesday, November 29 (from HW 8A, 8B and/or 9A)
- Printout and bring the Worksheet "DiffEQ.pdf" with you Thursday December 1 for TA sections

Today

- 9.1 Introduction to Differential Equations
- 9.3 Separable Equations

Learning Curves

Psychologists interested in learning theory study learning curves.
A learning curve is the graph of a function $P(t)$, the performance of someone learning a skill as a function of the training time t. The derivative $d P / d t$ represents the rate at which performance improves.
(1) When do you think P increases most rapidly? What happens to $d P / d t$ as t increases?
(2) If M is the maximum level of performance of which the learner is capable, what would be a reasonable model for learning?

Learning Curves

Problem From 9.1: Psychologists interested in learning theory study learning curves.

A learning curve is the graph of a function $P(t)$, the performance of someone learning a skill as a function of the training time t.

The learning process is modeled by the differential equation

$$
\frac{d P}{d t}=k(M-P),
$$

where M is the maximum level of performance, and k is a positive constant.

Solve this differential equation to find an expression for $P(t)$. What is the limit of this expression?

Solving $\frac{d P}{d t}=k(M-P)$

By writing the equation as one involving the differentials $d P$ and $d t$ separately and bringing the P variable to the same side as $d P$ we arrive at

$$
\frac{d P}{M-P}=k d t
$$

We integrate both sides

$$
\int \frac{d P}{M-P}=\int k d t \quad \Longrightarrow \quad-\ln |M-P|=k t+C_{0}
$$

Since $M-P>0$ we may remove the absolute values and exponentiate both sides to obtain

$$
M-P=C e^{-k t} \quad \text { or } \quad P=M-C e^{-k t}
$$

If the initial level of performance at time $t=0$ is
$P_{0}=P(0)=M-C e^{0}=M-C$, so $C=M-P_{0}$, therefore

$$
P(t)=M-\left(M-P_{0}\right) e^{-k t}
$$

Problem:

(1) For what non-zero values of k does the function $y=\sin k t$ satisfy the differential equation $y^{\prime \prime}+9 y=0$?
(2) For those values of k, verify that every member of the family of functions

$$
y=A \sin k t+B \cos k t
$$

is also a solution.

A separable equation is a first order differential equation in which the expression for $\frac{d y}{d x}$ can be factored as a function of x times a function of y, i.e.

$$
\frac{d y}{d x}=g(x) f(y) .
$$

If $f(y) \neq 0$, we may write this as

$$
\frac{1}{f(y)} d y=g(x) d x
$$

Integrating on both sides we have

$$
\int \frac{1}{f(y)} d y=\int g(x) d x
$$

If we can evaluate both integrals this yields a "solution" (namely and equation involving x and y without any derivatives). (We may or may not be able to solve for y as a function of x.)

Problem 1: Find the solution of the differential equation that satisfies the given initial condition.

$$
\frac{d y}{d t}=t e^{y}, \quad y(1)=0 .
$$

Problem 2 : Find the solution of the differential equation

$$
x y^{\prime}+y=y^{2}, \quad y(1)=-1 .
$$

