Announcements

- This week 9.1 (Introduction to Differential Equations), 9.3 (Separable Equations)
- Homework \# 9A (Center of Mass) \& 9B (Separable differential equations) Due tonight, Wednesday, November 30, 11:00pm
- Homework \# 10A \& 10B (both on Differential Equations) due Wednesday, December 7 at 11:00 pm
- Printout and bring the Worksheet "DiffEQ.pdf" with you tomorrow, Thursday December 1 for TA sections

Today

- Finish Problem from Monday
- Differential Equations
- Mixing Problems
- Radioactive Decay

Problem 2 : Find the solution of the differential equation

$$
x y^{\prime}+y=y^{2}, \quad y(1)=-1 .
$$

Mixing Problems (e.g.: a chemical dissolved in water)

Let $r_{\text {in }}$ and $r_{\text {out }}$ be the rates (in liters per minute) at which the liquid is entering and leaving the container respectively.

Let $C_{\text {in }}$ and $C_{\text {out }}$ be the concentrations of chemicals entering and leaving the container respectively.

Our independent variable is time, t, and the unknown (or dependent variable) is:
$y(t)=$ total amount of chemical in the container at time t.
Assuming that the container is always well mixed, we have

$$
C_{o u t}=\frac{y(t)}{V(t)}
$$

where $V(t)$ is the volume of liquid in the container at time t.

The differential equation is then

$$
\begin{aligned}
\frac{d y}{d t} & =C_{i n} r_{\text {in }}-C_{\text {out }} r_{\text {out }} \\
& =C_{i n} r_{\text {in }}-\frac{y(t)}{V(t)} r_{\text {out }}
\end{aligned}
$$

Note: If $r_{\text {in }}=r_{\text {out }}$ then the volume is constant. Otherwise

$$
V(t)=V_{0}+\left(r_{\text {in }}-r_{\text {out }}\right) t
$$

9.3 Problem: Warm up A tank contains 1000L of pure water.

1. Brine that contains 0.05 kg of salt per liter enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$.

The solution is kept thoroughly mixed and drains from the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank:

- after t minutes?
- after one hour?

9.3 Problem: A tank contains 1000L of pure water.

Brine that contains 0.05 kg of salt per liter enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$.

Brine that contains 0.04 kg of salt per liter enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$.

The solution is kept thoroughly mixed and drains from the tank at a rate of $15 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank:

- after t minutes?
- after one hour?
- What happens in the long run (i.e. as $t \rightarrow \infty$)?

