Announcements

- This week: Final Exam Review
- Homework \#10A \& 10B Due Wednesday, December 7. 11:00pm
- Bring ReviewOne.pdf and ReviewTwo.pdf to your TA sections this week
- Course evaluations are now open. Your input really matters!
- MATH 125 A: https://uw.iasystem.org/survey/165334
- MATH 125 B: https://uw.iasystem.org/survey/165324
- Final Exam: Saturday, December 10 from 1:30-4:20 pm (Bring your student ID)
\star Rooms: 125 A in KNE 110 and 125 B in KNE 210
- Cumulative Exam: Covers all material
- The only calculator allowed is the Ti-30x IIS.
- Allowed one 8.5×11 sheet of notes (both sides)
- May use the 20 integrals on p. 495 without deriving them. Show your work in evaluating any other integrals, even if on your note sheet.
- Do sample Finals: Math 125 Materials page and our webpage

Today

- Final Exam Review - Overview of Topics \& Old Final Exam Problems

Topics to review

- Antiderivatives
- Areas and distances, Riemann sums, definite integrals and the fundamental theorem of calculus, parts I and II
- Indefinite integrals, net change theorem
- Techniques of integration:
- Substitution rule
- Integration by parts
- Trigonometric substitution (trigonometric integrals)
- Partial fractions (includes long division of polynomials)
- Rationalizing substitutions
- Approximate integration: Midpoint, Trapezoid, and Simpson's rule
- Improper integrals (includes l'Hospital's rule): Infinite intervals, discontinuous functions
- Applications of integration
- Area between curves (includes graphing functions)
- Volumes (cross section and shell methods)
- Work
- Average value of a function
- Arc length
- Moments and centers of mass
- Differential equations (modeling and solving)

25 Final Exam - Winter 2005

Problem 1. Evaluate the following integrals.

- $\int_{0}^{2} x^{3} e^{x^{2}} d x$
- $\int \frac{\cos x}{\sin x} \ln (\sin x) d x$
- $\int x(x+1)^{2005} d x$
- $\int \frac{d x}{\sqrt{x^{2}-2 x-3}}$
- $\int \frac{x^{4}+4}{x^{3}+2 x^{2}} d x$

Winter 2015, Problem 4 (highly requested problem).

A region is bounded on the top by the curve $y=\sqrt{6+\cos (x)}$ and on the bottom by the x-axis. On the left it is bounded by a vertical barrier which at a given instant is at $x=-\pi$ and is moving to the left at α units $/ \mathrm{sec}$. On the right it is bounded by a vertical barrier which at that instant is at $x=\pi$ and is moving to the right at β units $/ \mathrm{sec}$. Find the instantaneous rate (in units ${ }^{2} / \mathrm{sec}$) at which area is being uncovered at that instant. Your answer should involve α and β.

