Announcements

- This week: Final Exam Review
- Homework #10A & 10B Due Wednesday, December 7. 11:00pm
- Bring ReviewOne.pdf and ReviewTwo.pdf to your TA sections this week
- Course evaluations are now open. Your input really matters!
 - MATH 125 A: https://uw.iasystem.org/survey/165334
 - MATH 125 B: https://uw.iasystem.org/survey/165324
- Final Exam: Saturday, December 10 from 1:30 4:20 pm (Bring your student ID)
 - * Rooms: 125 A in KNE 110 and 125 B in KNE 210
 - Cumulative Exam: Covers all material
 - The only calculator allowed is the Ti-30x IIS.
 - Allowed one 8.5 × 11 sheet of notes (both sides)
 - May use the 20 integrals on p. 495 without deriving them. Show your work in evaluating any other integrals, even if on your note sheet.
 - ► Do sample Finals: Math 125 Materials page and our webpage
- Today

• Final Exam Review - Overview of Topics & Old Final Exam Problems

Topics to review

- Antiderivatives
- Areas and distances, Riemann sums, definite integrals and the fundamental theorem of calculus, parts I and II
- Indefinite integrals, net change theorem
- Techniques of integration:
 - Substitution rule
 - Integration by parts
 - Trigonometric substitution (trigonometric integrals)
 - Partial fractions (includes long division of polynomials)
 - Rationalizing substitutions
- Approximate integration: Midpoint, Trapezoid, and Simpson's rule
- Improper integrals (includes l'Hospital's rule): Infinite intervals, discontinuous functions

- Applications of integration
 - Area between curves (includes graphing functions)
 - Volumes (cross section and shell methods)
 - Work
 - Average value of a function
 - Arc length
 - Moments and centers of mass
- Differential equations (modeling and solving)

25 Final Exam - Winter 2005

Problem 1. Evaluate the following integrals.

•
$$\int_{0}^{2} x^{3} e^{x^{2}} dx$$

•
$$\int \frac{\cos x}{\sin x} \ln(\sin x) dx$$

•
$$\int x(x+1)^{2005} dx$$

•
$$\int \frac{dx}{\sqrt{x^{2}-2x-3}}$$

•
$$\int \frac{x^{4}+4}{x^{3}+2x^{2}} dx$$

Winter 2015, Problem 4 (highly requested problem).

A region is bounded on the top by the curve $y = \sqrt{6 + \cos(x)}$ and on the bottom by the x-axis. On the left it is bounded by a vertical barrier which at a given instant is at $x = -\pi$ and is moving to the left at α units/sec. On the right it is bounded by a vertical barrier which at that instant is at $x = \pi$ and is moving to the right at β units/sec. Find the instantaneous rate (in units²/sec) at which area is being uncovered at that instant. Your answer should involve α and β .