Announcements

- Assigned reading for the week sections 5.3, 5.4 and 5.5.
- Homework \#1 (125 HW 1ABC, all 3 parts) must be completed by tonight, Wednesday, October 5, 11:00pm.
- Print out and bring the second worksheet "Antiderivatives and Areas" with you to your section Thursday
- Homework \#2 (125 HW 2ABC, all 3 parts) should be completed by next Monday night, October 10. Due Wednesday, October 12, 11:00pm.
- Quiz \#2 (taken from HW \#2) on Tuesday, October 11 in TA sections.

Today

- 5.2 The Definite Integral: Application of comparison properties from Friday.
- 5.3 The Fundamental Theorem of Calculus
- What is the relationship between differentiation and integration?
- The Fundamental Theorem of Calculus
- Some applications

Comparison properties for the integral

- If $f(x) \geq 0$ for x in $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq 0
$$

- If $f(x) \geq g(x)$ for x in $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

- If $m \leq f(x) \leq M$ for x in $[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

The Fundamental Theorem of Calculus

Let f be a continuous function on $[a, b]$.
(1) The function defined by

$$
g(x)=\int_{a}^{x} f(t) d t
$$

is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x)
$$

(2) If F is any antiderivative of f, i.e $F^{\prime}=f$ in (a, b) then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Example

Find a function f and a number a such that

$$
6+\int_{a}^{x} \frac{f(t)}{t^{2}} d t=2 \sqrt{x}
$$

Solution:

Find a function f and a number a such that

$$
6+\int_{a}^{x} \frac{f(t)}{t^{2}} d t=2 \sqrt{x}
$$

Step 1: The first observation is that if the equality holds then the derivatives must also be equal:

$$
\frac{d}{d x}\left(6+\int_{a}^{x} \frac{f(t)}{t^{2}} d t\right)=\frac{d}{d x}(2 \sqrt{x}) .
$$

By Part 1 of the Fundamental Theorem of Calculus, and an application of the power rule for derivatives, this gives us

$$
\frac{f(x)}{x^{2}}=x^{-\frac{1}{2}}
$$

Solving for $f(x)$ we then get

$$
f(x)=x^{3 / 2}
$$

Step 2: We may now use Part 2 of the Fundamental Theorem of Calculus to find a.
The LHS of the original equality with $f(t)=t^{3 / 2}$ is given by

$$
\begin{aligned}
6+\int_{a}^{x} \frac{f(t)}{t^{2}} d t & =6+\int_{a}^{x} \frac{t^{3 / 2}}{t^{2}} d t \\
& =6+\int_{a}^{x} t^{-1 / 2} d t \\
& =6+2 \sqrt{x}-2 \sqrt{a}
\end{aligned}
$$

(since $2 \sqrt{t}$ is an antiderivative of $t^{-1 / 2}$).
Setting this equal to the RHS of the original equality we get

$$
6+2 \sqrt{x}-2 \sqrt{a}=2 \sqrt{x}
$$

This gives us

$$
3-\sqrt{a}=0
$$

from which we conclude that $a=9$.

