Announcements

- Assigned reading for the week sections 6.1, 6.2 and 6.3.
- Homework \#2 (125 HW 2ABC, all 3 parts) should be completed by tonight Monday, October 10. Due Wednesday, October 12, 11:00pm.
- Quiz \#2 (taken from HW \#2) Tomorrow (Tuesday) October 11 in TA sections.
- Print out and bring the third worksheet: "Area between curves" with you to your section Thursday

Today

- Recap: Net Change Theorem: Displacement vs Distance Traveled
- Quick Review: The chain rule (3.4).
- 5.5: The Substitution Rule

Example

If an object moves along a straight line with position $s(t)$ its velocity is $v(t)=s^{\prime}(t)$ and

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} v(t) d t & =s\left(t_{2}\right)-s\left(t_{1}\right) \\
& =\text { net change of position } \\
& =\text { displacement } \\
\int_{t_{1}}^{t_{2}}|v(t)| d t & =\text { total distance traveled }
\end{aligned}
$$

Displacement vs total distance traveled: Suppose

$$
v(t)=3 t-5 \quad \text { on } 0 \leq t \leq 3
$$

(a) Find the displacement
(b) Find the total distance traveled between $t=0$ and $t=3$.

Displacement vs total distance traveled

Suppose

$$
v(t)=3 t-5 \quad \text { on } 0 \leq t \leq 3
$$

(a) The displacement is given by

$$
\begin{aligned}
s(3)-s(0) & =\int_{0}^{3} v(t) d t \\
& =\int_{0}^{3}(3 t-5) d t \\
& =\left.\left(3 \frac{t^{2}}{2}-5 t\right)\right|_{0} ^{3}=\frac{27}{2}-15=-\frac{3}{2} .
\end{aligned}
$$

(b) The total distance traveled between $t=0$ and $t=3$ is given by

$$
\int_{0}^{3}|v(t)| d t=\int_{0}^{3}|3 t-5| d t
$$

Since $3 t-5=0$ when $t=5 / 3$ we see that this is

$$
\begin{aligned}
\int_{0}^{3}|v(t)| d t & =\int_{0}^{5 / 3}|3 t-5| d t+\int_{5 / 3}^{3}|3 t-5| d t \\
& =\int_{0}^{5 / 3}(5-3 t) d t+\int_{5 / 3}^{3}(3 t-5) d t \\
& =\left.\left(5 t-3 \frac{t^{2}}{2}\right)\right|_{0} ^{5 / 3}+\left.\left(3 \frac{t^{2}}{2}-5 t\right)\right|_{5 / 3} ^{3} \\
& =5\left(\frac{5}{3}\right)-\frac{3}{2}\left(\frac{5}{3}\right)^{2}+\frac{27}{2}-15-\frac{3}{2}\left(\frac{5}{3}\right)^{2}+\frac{25}{3}=\frac{41}{6}
\end{aligned}
$$

The chain rule

If f and g are both differentiable and $F=f \circ g$ is the composition function defined by $F(x)=f(g(x))$, then F is differentiable and F^{\prime} is given by the product

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

In Leibniz notation, if $y=f(u)$ and $u=g(x)$ are both differentiable functions, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

The substitution rule

If $u=g(x)$ is a differentiable function whose range is an interval $/$ and f is continuous on l, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

