Announcements

- Assigned reading for the week sections 6.1, 6.2 and 6.3.
- Homework \#2 (125 HW 2ABC, all 3 parts) Due tonight, Wednesday, October 12, 11:00pm.
- Print out and bring the third worksheet: "Area between curves" with you to your section Thursday
- Homework \#3 (125 HW 3ABC, all 3 parts) Due Wednesday, October 19, 11:00pm (complete before section on Tuesday 10/18)
- Midterm \#1 approaching fast: Thursday, October 20 (More info on Friday).

Today

- Definite Integrals via Substitution
- 6.1: Areas between Curves

Definite integrals via Substitution

Recall from last class, using Substitution, we showed that

$$
\int x^{2} \sqrt{1+x^{3}} d x=\frac{2}{9}\left(1+x^{3}\right)^{3 / 2}+C
$$

Using this and the FTC II we can compute a definite intergal

$$
\begin{aligned}
\int_{0}^{2} x^{2} \sqrt{1+x^{3}} d x & =\left.\frac{2}{9}\left(1+x^{3}\right)^{3 / 2}\right|_{0} ^{2} \\
& =\frac{2}{9}(9)^{3 / 2}-\frac{2}{9}(1)^{3 / 2} \\
& =\frac{54}{9}-\frac{2}{9}=\frac{52}{9}
\end{aligned}
$$

Is there a way that we can avoid this 2 -step process?

Definite integrals via Substitution II

We used substitutions $u=1+x^{3}$ and and $d u=3 x^{2} d x$ to evaluate the integral. With the definite integral we have to be careful with the limits of integration:

$$
\begin{aligned}
\int_{0}^{2} x^{2} \sqrt{1+x^{3}} d x & =\frac{1}{3} \int_{1}^{9} \sqrt{u} d u \\
& =\left.\frac{2}{9} u^{3 / 2}\right|_{1} ^{9} \\
& =\frac{2}{9}\left(9^{3 / 2}-1^{3 / 2}\right)=\frac{2}{9}(27-1)=\frac{52}{9} .
\end{aligned}
$$

We changed the limits of integation because in the first integral they indicate the values $x=0$ and $x=2$. After the substitution $u=1+x^{3}$ these correspond to $u=1$ and $u=9$.

The substitution rule for definite integrals

If $u=g(x)$ is a differentiable function on $[a, b]$ and f is continuous function on the range of g, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

The problem of computing the area between two curves

Problem: Consider the region S that lies between 2 curves $y=f(x)$ and $y=g(x)$ and between the vertical lines $x=a$ and $x=b$, where f and g are continuous functions and $f(x) \geq g(x)$ for all x in $[a, b]$. Compute its area.

Areas between Curves

The area A of the region bounded by the curves $y=f(x)$ and $y=g(x)$ and between the vertical lines $x=a$ and $x=b$, where f and g are continuous functions and $f(x) \geq g(x)$ for all x in $[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Exercise 1

a) Find the area of region bounded by the graphs of the curves $y=0$ and $y=x^{2}-4$ between $x=-2$ and $x=2$.
b) Find the area of region bounded by the graphs of the curves $y=0$ and $y=x^{2}-4$ between $x=-3$ and $x=3$.

Areas between Curves II

The area A of the region bounded by the curves $y=f(x)$ and $y=g(x)$ and between the vertical lines $x=a$ and $x=b$, where f and g are continuous functions in $[a, b]$ is

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

More Examples

2) Find the area of region bounded by the graphs of the curves $y=x^{2}$ and $y=x^{4}$.
