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Abstract

Asymptotic Behavior of Marginally Trapped Tubes
in Spherically Symmetric Black Hole Spacetimes

Catherine M. Williams

Chair of the Supervisory Committee:
Professor Daniel Pollack

Department of Mathematics

We begin by reviewing some fundamental features of general relativity, then outline the mathe-

matical definitions of black holes, trapped surfaces, and marginally trapped tubes, first in general

terms, then rigorously in the context of spherical symmetry. We describe explicitly the reduction of

Einstein’s equation on a spherically symmetric 4-dimensional Lorentzian manifold to a system of

partial differential equations on a subset of 2-dimensional Minkowski space. We discuss the asymp-

totic behavior of marginally trapped tubes in the Schwarzschild, Vaidya, and Reisner-Nördstrom

solutions to Einstein’s equations in spherical symmetry, as well as in Einstein-Maxwell-scalar field

black hole spacetimes generated by evolving certain classes of asymptotically flat initial data.

Our first main result gives conditions on a general stress-energy tensor Tαβ in a spherically

symmetric black hole spacetime that are sufficient to guarantee that the black hole will contain

a marginally trapped tube which is eventually achronal, connected, and asymptotic to the event

horizon. Here “general” means that the matter model is arbitrary, subject only to a certain positive

energy condition. A certain matter field decay rate, known as Price law decay in the literature, is

not required per se for this asymptotic result, but such decay does imply that the marginally trapped

tube has finite length with respect to the induced metric. In our second main result, we give two

separate applications of the first theorem to self-gravitating Higgs field spacetimes, one using weak

Price law decay, the other certain strong smallness and monotonicity assumptions.
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Chapter 1

INTRODUCTION

Few features of modern cosmology have captured the popular imagination as vividly as black

holes. They have long intrigued those studying general relativity, too; black holes are nearly as old a

concept as relativity theory itself. Unfortunately, their mathematical definition requires global infor-

mation about the spacetime, and this makes them difficult to analyze, physically or mathematically,

or to simulate numerically. Considerable effort has therefore been directed toward developing more

tractable quasi-local frameworks to describe black hole behavior, especially recently. The most

widely accepted such notion uses hypersurfaces called dynamical and isolated horizons to model

the surfaces of black holes; these belong to more general class of hypersurfaces known as margin-

ally trapped tubes (MTTs). Investigation of the geometry of such hypersurfaces is now underway,

and in the last few years, various existence, uniqueness, and compactness results have been estab-

lished for them [1, 3, 2]. One remaining open problem concerns the relationship between MTTs

and the traditional definition of black holes: it is known that MTTs always lie inside of black holes

(in physically reasonably situations), but do the two models coincide asymptotically? That is, must

MTTs asymptotically approach black hole event horizons “at late times”? This thesis addresses

this question in the special case of spherical symmetry: we give conditions on a black hole space-

time which guarantee the existence and “nice” asymptotic behavior of an MTT. We also show how

these conditions may be attained for a certain a type of matter model, the Higgs field, for which the

asymptotic result was previously unknown.

1.1 An overview of relativity, black holes, and MTTs

The theory of general relativity postulates that the universe should be described as a Lorentzian 4-

manifold � M � g � , while the matter and energy in the universe are described by a symmetric 2-tensor

Tαβ on M called the stress-energy tensor. Einstein’s equations prescribe the interplay between the
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geometry of the underlying manifold and the matter and energy in it:

Rαβ � 1
2 Rgαβ � 8πTαβ �

where Rαβ is the Ricci curvature of the metric g and R is its scalar curvature. Lorentzian manifolds� M � g � satisfying Einstein’s equations are called spacetimes.

Of central importance to the study of black holes is the spacetime’s causal structure. That is, a

vector X tangent to a Lorentzian manifold � M � g � may be classified as spacelike, timelike, or null,

depending on whether its Lorentzian inner product with itself is positive, negative, or zero, respec-

tively, and timelike and null vectors (collectively called causal vectors) can be further categorized as

future or past-directed, provided M is time orientable (something we will assume). Curves and sub-

manifolds of M inherit these causal characterizations in a natural way. Light and matter sweep out

future-directed causal curves called worldlines — null curves describe the paths of light rays, time-

like ones the paths of massive objects. A key feature of causal structures on Lorentzian manifolds

is that they are preserved by conformal changes of metric.

Mathematically speaking, locating a black hole region entails the following: one begins with a

noncompact, asymptotically flat spacetime M — roughly, this means that the complement of some

compact region in M is diffeomorphic to a finite union of copies of � 4 � B1 � 0 � and the metric g

decays to the flat metric with respect to a radial coordinate on each copy. One then conformally

compactifies each asymptotically flat end and considers the boundary of this new, compact, “un-

physical” spacetime to represent the boundary of the physical one “at infinity.” Next, one identifies

a null portion of this boundary as “future null infinity,” denoted I
�

, and declares the black hole

region B � M to be that portion of the spacetime such that, identifying M with its image in the un-

physical spacetime, no future-directed causal curve originating in B can terminate along I
�

. This

definition thus aligns with our intuition that light and matter which enter the black hole region must

stay in there and can never escape out to infinity. The event horizon H is the boundary of B in M;

it is a null hypersurface. It is important to note that one must have the entire spacetime in hand in

order to make the conformal compactification and hence to locate the black hole.

The cumbersomeness of the preceding definition begs the question: is there any more local way

to describe how black holes “capture” light? The answer is that there is indeed. Given any spacelike

2-surface S � M and a future null vector field � orthogonal to S, one defines the (scalar) expansion
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of S in the direction � , denoted θ ����� , as the infinitesimal change in surface area of S in the direction� . Now, a given spacelike 2-surface S has exactly two orthogonal future null vector fields along

it. One can imagine these as directions in which light rays travel as they leave the surface of a

glowing bubble: some photons are directed radially out from the surface of the bubble, towards a

viewing eyeball, say, while other photons’ paths lead radially in toward the center of the bubble.

Both directions are orthogonal to S, and because time is included in the Lorentzian picture, they are

not collinear. In general, if we determine which of these two orthogonal future null directions points

“in” and which points “out” (e.g. if M is asymptotically flat, this may be done in a natural way),

then we label the expansions of their corresponding vector fields θ � and θ � , respectively. While the

magnitudes of θ � then depend on the scaling of these vector fields, their signs do not. In regions

of mild curvature, we generally have θ ��� 0 and θ ��� 0 — the photon wavefront from the glowing

bubble is a larger sphere if the photons are outer-directed, smaller if the photons are inner-directed.

In regions of strong curvature, however, this need not be the case. If θ ��� 0 and θ � � 0 everywhere

on S, then we say the surface S is trapped, while if θ ��� 0 and θ � � 0 everywhere on S, we call it

marginally trapped. The set of all points in M contained in at least one trapped surface is called the

trapped region.

An especially useful extension of the notion of a trapped surface is that of a marginally trapped

tube (MTT), denoted A . This is a hypersurface which is foliated by closed marginally trapped

(spacelike) 2-surfaces. In physically reasonable black hole spacetimes, trapped and marginally

trapped surfaces always lie inside of the black hole region, and hence so do MTTs; the latter in

fact act as a kind of boundary between the regular space and the trapped region. Certain MTTs

have special names: a dynamical horizon (DH) is an MTT which is itself spacelike, while an iso-

lated horizon (IH) is essentially an MTT which is null. Dynamical and isolated horizons appear

to be good models of the surfaces of dynamical and equilibrium black holes, respectively. Many

numerical simulations of black holes in fact use DHs and IHs instead, and some of the physics com-

munity (e.g. those developing loop quantum gravity) have found them to be well-suited for quantum

considerations [21, 4].

Recent results about MTTs paint an intriguing picture. On the one hand, an arbitrary marginally

trapped surface satisfying a certain stability condition (akin to that for stable minimal surfaces in

Riemannian manifolds) is a leaf of not just one, but infinitely many MTTs [1]. On the other hand,
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a maximum principle argument shows that the locations of MTTs with respect to each other are in

fact highly constrained [3]. In many situations there is a fascinating interplay between physics and

geometry: for instance, if one assumes the dominant energy condition (a local notion of positive

energy), then the 2-surfaces foliating a generic MTT must have spherical topology. However, the

situation in higher dimensions is very different [18, 17].

A convenient setting in which to study MTTs is that of spherical symmetry. In fact, all known

analytical (exact) examples of MTTs are spherically symmetric, and all existing analytical theorems

concerning their asymptotic behavior assume spherical symmetry. A spherically symmetric space-

time is one which admits an SO � 3 � -action by isometries. Given such a spacetime M, one can work

with the 2-dimensional Lorentzian quotient manifold Q � M � SO � 3 � instead of M without loss of

information.

For concreteness, choose double null coordinates � u � v � on � 2 , such that the Minkowski (flat)

metric η takes the form η � � dudv. Then we may conformally embed our quotient manifold Q into� 2 such that the metric on Q takes the form � Ω2dudv, and the original metric g may be expressed

g � � Ω2dudv � r2ds2, where ds2 � dθ2 � sin2θdφ2 is the standard metric on S2, and Ω � Ω � u � v �
and r � r � u � v � are smooth functions on Q , nonnegative away from the center of symmetry (if one

exists). Assuming that the stress-energy tensor Tαβ is invariant under the SO � 3 � action, the Einstein

field equations for g on M reduce to a system of three pointwise equations on Q for the tensor

components Tuu, Tuv, and Tvv in terms of r, Ω, and their first- and second-order partial derivatives

in u and v. We can pass back and forth between the 2-dimensional Q and the 4-dimensional M

without losing any information about the metric, so we may consider the two to be interchangeable.

A straightforward calculation shows that θ � � 2 � ∂ur
�
r � 1 and θ � � 2 � ∂vr

�
r � 1, so for r � 0, the signs

of θ � and θ � are exactly those of ∂vr and ∂ur, respectively. Thus, as long as ∂ur � 0 throughout Q ,

trapped and marginally trapped surfaces in M correspond to points in Q at which ∂vr � and � 0,

respectively, and the MTT A is precisely the level set � ∂vr � 0  .
1.2 Existing and new results on the asymptotic behavior of MTTs

The work described in this thesis involves the MTTs’ long term behavior, that is, their behavior

“near infinity.” In particular, we focus on the question of whether MTTs are, in general, asymptotic
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to classical black hole event horizons. Recall that, informally speaking, a black hole is a region

from which no light rays can escape “to infinity.” If an MTT lying inside a black hole is asymptotic

to the black hole’s event horizon, then essentially all the worldlines that enter the black hole must

in turn cross through the MTT into the trapped region — that is, the MTT traps all the same light

and matter as the black hole. On the other hand, if an MTT is not asymptotic to the black hole’s

event horizon, then some worldlines would be caught by the black hole but not by the MTT. In this

sense the resolution of this question completely in the affirmative would be a proof of concept of the

dynamical horizon framework as an alternate model for black holes. On the other hand, examples

of physically reasonable MTTs not asymptotic to the event horizon could help to shed some light on

one of the major open problems in mathematical relativity, the (strong) cosmic censorship conjecture

[8, 9].

One major problem in trying to compare the asymptotic behavior of MTTs with classical event

horizons is, as has already been pointed out, that the latter are so difficult to locate in general, even

in spherical symmetry. One can of course start by examining known (exact) spherically symmetric

black hole spacetimes and looking for MTTs there; unfortunately this list of spacetimes is rather

quickly exhausted. In the classical spherically symmetric black hole solutions called Schwarzschild

and Reisner-Nordström, which describe vacuum and electro-vacuum spacetimes, respectively, the

spherically symmetric MTTs are null and coincide exactly with the black hole event horizons. In

Vaidya spacetimes, where the matter model is an (ingoing) null fluid, the spherically symmetric

MTTs are DHs or IHs and are either asymptotic to or coincide with the event horizon (provided a

physically reasonable energy condition holds). This latter example is well-known and has in fact

been influential in shaping expectations about MTT behavior, despite the fact that it is not very

physical.

Alternately, and more physically, one can recast the Einstein equations as an initial (Cauchy)

value problem and generate spacetimes from initial data, locate any black holes, and then look for

MTTs. This approach has proven successful for several different (spherically symmetric) matter

models. In particular, the maximal development of spherically symmetric asymptotically flat initial

data for the Einstein equations coupled with a scalar field, the Maxwell equations and a (real) scalar

field, or the Vlasov equation (describing a collisionless gas) does indeed contain an MTT which is

asymptotic to the event horizon [7, 11, 15].
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In order to consider the problem of asymptotic behavior of an MTT for a general stress-energy

tensor, however, one cannot begin with an asymptotically flat initial data set and generate a black

hole spacetime — there are no evolution equations for the matter with which to evolve the initial

data. Therefore we begin with the interior of a black hole, assuming that it has arisen in the max-

imal development of such data for some reasonable matter field evolution equations. In practice,

generalizing Dafermos’s setup in [11], we start with a characteristic rectangle, ! 0 � u0 "$# ! v0 � ∞ � in co-

ordinates, and assume that initial data has been prescribed on its two past edges C in : �%! 0 � u0 "&# � v0  
and Cout : �'� 0  # ! v0 � ∞ � that agrees with what would be there if Cout coincided with the outer por-

tion of the event horizon of such a black hole. One such requirement is that the radial function

r � u � v � satisfy r � 0 � v �)( r � � ∞ as v
(

∞. We then look at the maximal development Q of this

characteristic initial data inside the rectangle (again assuming that there are matter field evolution

equations at play, but without having them explicitly) and try to locate an MTT.

Our first main result, presented in Section 5.3, says that if the stress-energy tensor satisfies the

dominant energy condition (which amounts to Tuu � Tvv � and Tuv * 0 in spherical symmetry), and if

there exists a δ � 0 such that four particular conditions involving r, Ω, Tuu, Tuv and their derivatives

are satisfied in the region of Q where ∂vr � 0 and r � u � v � * r � � δ, then the rectangle contains

an MTT which is asymptotic to the event horizon and which is connected and spacelike or null at

late times. These four conditions are nontrivial, but they are satisfied in Vaidya black holes and in

the Einstein-scalar field and Einstein-Maxwell-scalar field black holes considered in [7] and [11],

respectively. Our second set of results, given in Sections 6.1 and 6.2, shows that these conditions can

also be satisfied in a large class of Higgs field spacetimes, where the matter is described by a scalar

field φ and a potential function V � φ � satisfying + φ � V ,-� φ � . In particular, we give two examples in

which physically reasonable conditions on φ and V imply that the conditions and hence conclusions

of the main theorem hold. All of these results were presented first in [24] and are reproduced here

essentially unchanged.
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Chapter 2

BACKGROUND

2.1 Spacetime machinery

As noted in the introduction, general relativity theory postulates that the universe should be de-

scribed as a Lorentzian manifold, that is, a smooth manifold Mn paired with a metric g of signature� � � � �/././.0� � � . Although much of what follows may be carried out for higher dimensions, we will

always work in dimension n � 4. Matter and energy in the universe are described by a symmetric

2-tensor Tαβ on M called the stress-energy tensor. The geometry of this manifold and the matter and

energy in it are coupled via Einstein’s equations:

Rαβ � 1
2 Rgαβ � 8πTαβ � (2.1)

where Rαβ is the Ricci curvature of the metric g and R is its scalar curvature. Lorentzian mani-

folds � M � g � satisfying Einstein’s equations are called spacetimes. We will always assume that our

spacetimes are connected.

For any spacetime � M � g � , the signature of g enables us to partition the tangent vectors of M into

three types. A tangent vector X 1 TpM is called timelike if g � X � X � � 0, spacelike if g � X � X � � 0, or

null if g � X � X � � 0. If g � X � X ��2 0, that is, X is either timelike or null, then X is said to be causal.

These characterizations extend to certain curves in M as well. A differentiable curve γ : I
(

M is

called timelike (respectively null, spacelike, or causal) if at each t 1 I, the vector γ , � t � 1 TpM is

timelike (respectively null, spacelike, or causal). The spacetime M is said to be time orientable if

it admits a global, continuous, non-vanishing timelike vector field. Given such a vector field, say,

V , we may assign M an explicit time orientation: given any causal vector X 1 TpM, we declare it

to be future directed if g � X � Vp
� � 0 and past directed otherwise. Henceforth we will assume that

all our spacetimes are time orientable and have been assigned explicit orientations. A submanifold,

too, may be characterized as spacelike, timelike, or null if the pullback of g on it is everywhere

Riemannian, Lorentzian, or degenerate, respectively.
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Once we have established a time orientation and the causal character of tangent vectors at each

point, we can extend notions of causality to points in the manifold itself. If p is a point in a spacetime

M, then we may define the chronological future of the point p as the set

I
� � p � �'� q 1 M : 3 a piecewise timelike future directed curve from p to q  04

The chronological past of p, denoted I �5� p � , is defined similarly, replacing “future” with “past”.

The causal future and causal past of p are denoted J
� � p � and J � � p � , respectively, and are defined

analogously by replacing the word “timelike” in the definition with “causal”. Note that the point p

is not contained in I
� � p � but is contained in J

� � p � , since degenerate curves are by definition causal.

A set S in M is said to be achronal if no two points p � q 1 S may be joined by a piecewise timelike

curve, i.e. there do not exist p � q 1 S such that q 1 I
� � p � . The future domain of dependence of a set

S, denoted D
� � S � , is defined to be the set of events in the spacetime that are completely predicted

by the events in S. More precisely,

D
� � S � �'� p 1 M : every past inextendible causal curve through p intersects S  �

where “inextendible” is defined appropriately. The past domain of dependence D �5� S � is defined

analogously by replacing “past” with “future”. Taken together, they constitute the (full) domain of

dependence of S:

D � S � � D
� � S � 
 D � � S � 4

If a set S is closed, achronal, and its domain of dependence is all of the spacetime, D � S � � M, then S

is said to be a Cauchy surface. A spacetime � M � g � which admits a Cauchy surface is called globally

hyperbolic.

An arbitrary observer (a priori moving more slowly than the speed of light) traces out a future

directed timelike curve in the spacetime manifold called a worldline. If ξα is the tangent vector to

such a worldline, then the (scalar) energy density of matter measured by that observer is given by

Tαβξαξβ, while the quantity � T α
β ξβ represents the full 4-vector energy-momentum density of matter

that he or she sees. Motivated by local physical considerations, relativists often impose restrictions

on these quantities. In this paper we will be concerned only with the null energy condition, which

requires that Tαβµαµβ * 0 for all null vectors µα, and the dominant energy condition, which requires

that for any future directed timelike ξα, � T α
β ξβ should be a future directed timelike or null vector.
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2.2 Black holes

Intuitively speaking, a black hole is a region of spacetime curved in such a way that, once an ob-

server passes into the region, he or she can never again escape or even communicate with observers

outside it. Such extreme curvature is generally thought to arise from the gravitational collapse of a

massive body. Another way of heuristically describing a black hole is to say that the worldline of

an observer who has traveled into a black hole will never reach “future infinity”; instead, the world-

line is trapped inside the black hole and, it is thought, terminates in “finite time” at some sort of

spacetime singularity. Such a notion is difficult to make precise, however; we will need to introduce

further machinery in order to make mathematical sense of it, first in general terms here, then later in

a fully rigorous way in the context of spherical symmetry.

Roughly speaking, a spacetime � M � g � is said to be asymptotically flat if the complement of

some compact region in M is diffeomorphic to a finite union of copies of � 4 � B1 � 0 � and the metric

decays to the flat metric with respect to any radial coordinate on each copy. Various conditions

on the exact decay rates of the metric and its derivatives are usually imposed when one makes the

definition rigorous [5]. One can then conformally compactify each asymptotically flat end (similarly

to the way that one conformally compactifies Minkowski space) and consider the boundary of this

new “unphysical” spacetime to represent the boundary of the physical one “at infinity”. Under

appropriate conditions, this boundary will contain three components of particular interest: a point

i0, called spatial infinity, and sets I
�

and I � , pronounced “scri plus” and “scri minus”, respectively.

These sets are defined by the relations I
� � J

� � i0 � � i0 and I � � J � � i0 � � i0, and in particular,

under appropriate regularity assumptions, I
�

and I � will be null surfaces. They are called future

and past null infinity, respectively. Because a conformal change of metric preserves causal structure,

it makes sense to talk about the set J ��� I �	� in the original physical spacetime M, called the domain

of outer communications. Roughly speaking, this set consists of all spacetime events which can be

seen “from infinity”. The complement of this set, B � M
�

J �5� I �	� , is called the black hole region,

and its boundary H � ∂J � � I � � is said to be the event horizon.
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2.3 Trapped surfaces

Although the definition of a black hole given above makes sense both intuitively and mathematically,

it has the drawback that one needs to have information about the entire spacetime manifold at hand

in order to find its conformal boundary and thus locate the black hole region. One could not, for

example, tell by looking at an open subregion of M whether or not it contains a black hole. So

physicists have looked for local and quasi-local notions to use along with or in place of the standard

definition of black holes, hoping to capture their essence but make the mathematics and physics

more manageable. Various ideas have been proposed over time, some of which we discuss below.

A congruence of null geodesics is simply a family of null geodesics which foliates some open

region of spacetime. Given a point p on a spacelike 2-surface S in M, there are exactly two distinct

future null directions orthogonal to S at p, and we can always find two distinct congruences of future

directed null geodesics orthogonal to S, defined up to choice of parametrization, whose tangent

vectors coincide with these two future null directions along S. (Away from S, the congruences are

not uniquely specified.) If � α is the tangent vector field of one these congruences, then we can define

θ ����� , the expansion of S in the direction � , by

θ �6�-� � divS � α � hαβ∇β � α �
where ∇ is the Levi-Civita connection on M and h is the induced Riemannian metric on the 2-surface

S. Since a null geodesic does not in general admit a canonical parametrization, the vector field � α and

hence its expansion θ ����� are dependent on the choice of parametrization of the null normal geodesics

in the congruence. However, if we rescale � α by some positive function λ, we can compute that

θ � λ ��� � λθ ����� , so the sign of the expansion θ ����� is indeed well-defined. Intuitively speaking, θ �����
measures the infinitesimal change in the area of S in the direction � α. One typically expects that the

expansion will be positive in one of the null normal directions to S and negative in the other (think

of the inner- and outer-pointing normals of a standard 2-sphere, for example), but if the ambient

manifold is sufficiently curved, that characterization need not hold. In particular, if a 2-surface S

has future null directions � and n such that both θ ����� � 0 and θ � n � � 0, then S is called a trapped

surface; the surface is marginally trapped if both expansions are merely nonpositive. If � and n can

be distinguished from each other by determining that � is “outer” and n “inner”, for example if M
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is asymptotically flat (in which case � is chosen to point “towards future null infinity”), then we say

that S is outer marginally trapped if θ ���-� 2 0, and it is an apparent horizon if θ ����� � 0.

A famous result of Penrose shows just why trapped surfaces are important: they signal the

development of spacetime singularities often associated with black holes. In particular, in 1965, he

proved the following

Theorem. Let � M � g � be a connected, globally hyperbolic spacetime whose Cauchy surface is non-

compact and which satisfies the null energy condition. If M contains a closed trapped surface S,

then there exists at least one inextendible, future directed, orthogonal null geodesic emanating from

S and having finite affine length in M. [19]

When a geodesic γ is given an affine parametrization, i.e. γ : � 0 � T �	( M satisfies ∇ γ̇ � t � γ̇ � t � � 0 for

all t 17� 0 � T � , then its affine length is just the value T . The existence of an inextendible geodesic of

finite affine length signals either that some sort of singularity occurs at its “endpoint” or that global

hyperbolicity fails there. In either case, the trapped surface acts as a local indication of a pathology

in the spacetime. Furthermore, in an asymptotically flat spacetime M, which is the only type of

spacetime in which black holes may even be defined, under a certain extra asymptotic condition

(“strong asymptotic predictability”), one can show that any trapped surface must lie inside a black

hole region [22].

2.4 Marginally trapped tubes

Trapped surfaces still do not quite provide a local model for what physicists call a black hole.

But another object has recently been proposed to provide a quasi-local model for a black hole:

a dynamical horizon (DH) in a spacetime � M � g � is a spacelike hypersurface foliated by closed

spacelike 2-surfaces such that, on each leaf S, the expansion θ � l � of one null normal � α vanishes, and

the expansion θ � n � of the other null normal nα is strictly negative. If M is asymptotically flat or some

other notion of spatial infinity can be applied, then one always takes θ � l � � θ � and θ � n � � θ � , where

the plus and minus denote the “outward” and “inward” directions, respectively. Note that each of the

foliating 2-surfaces is thus a marginally trapped surface as well as an apparent horizon. It turns out

that dynamical horizons provide a good local model for an evolving black hole, and physicists have

been able to extend notions of black hole thermodynamics and entropy to them with great success
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[4].

Dynamical horizons have timelike and null analogs as well, called timelike membranes (TMs)

and non-expanding horizons (NEHs). These are defined by replacing spacelike with timelike or

null, respectively, as the hypothesis on the hypersurface (but not on the foliating 2-surfaces), and

in the case of non-expanding horizons, one requires in addition that � Tαβξβ be future causal for

any future directed null normal ξα [4, 3]. In spacetimes in which the dominant energy condition

holds, this extra condition for non-expanding horizons is satisfied a priori. Isolated horizons (IHs),

which are non-expanding horizons satisfying certain other physical and regularity conditions, are

thought to model black holes in an equilibrium state, while no concrete physical meaning is asso-

ciated with timelike membranes; since future directed timelike curves can pass through a timelike

membrane in either direction, it is not good candidate for a model of the surface of a black hole.

Collectively, dynamical and non-expanding horizons and timelike membranes are called marginally

trapped tubes.

Regardless of whether one wants to use some flavor of marginally trapped tube as a replacement

model for a black hole, however, the study of their causal and asymptotic behavior is of interest

in its own right. Since MTTs always lie inside of black holes in physically reasonable spacetimes,

any new insight into their geometry provides a window into the black hole interior, a notoriously

difficult region to study.
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Chapter 3

SPHERICAL SYMMETRY

The study of spherically symmetric spacetimes has a venerable history. One of the first exact so-

lutions to Einstein’s equations, found by the physicist Karl Schwarzschild in the same year Einstein

published his theory of general relativity, is spherically symmetric. The Schwarzschild solution

describes the gravitational field in the vacuum surrounding a spherically symmetric body and was

used to provide some of the first experimental confirmation of Einstein’s theory. Besides Schwarz-

schild’s, there are other important spherically symmetric exact solutions to Einstein’s equations,

such as the Reisner-Nordström and Vaidya spacetimes. Such solutions are the model spaces for

many aspects of relativity theory and provide a testing ground for a wide range of theories. But even

aside from such exact solutions, imposing an assumption of spherical symmetry in general casts

the theory into a vastly simpler setting while still providing (one hopes) heuristics representative of

generic non-spherically symmetric solutions. In this section, we will describe in detail the reduction

of the spherically symmetric 3+1-manifold setting to a 1+1-setting.

3.1 Structure and energy assumptions

In general, a spacetime � M � g � is said to be spherically symmetric if the Lie group SO � 3 � acts on

it by isometries with orbits which are either fixed points or spacelike 2-spheres. In order to make

use of this concept in practice, however, we will need to impose a large number of very specific

additional conditions on � M � g � . The end goal is to transfer all of the important causal and asymptotic

data of M to a 1+1-dimensional quotient manifold which we can then conformally embed into

Minkowski space; all of the assumptions we make here are necessary to ensure that this conformally

embedded quotient manifold and its boundary are sufficiently well-behaved. The remainder of the

setup described in this section is essentially from [13].

In what follows, we take � M � g � to be a globally hyperbolic spacetime satisfying the dominant

energy condition which admits an SO � 3 � -action by isometries. We assume that the quotient manifold
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Q � M � SO � 3 � inherits the structure of a 1+1 Lorentzian manifold with a boundary corresponding to

the points fixed by the SO � 3 � -action, the center of symmetry. We further assume M is the maximal

development of its Cauchy surface Σ and that the quotient Q
�

of its causal future J
� � Σ � may be

conformally embedded into a bounded subset of Minkowski space �8� 2 � η � . We assume that Q
�

contains just one of its connected boundary components and that this boundary component has the

form Γ 
 S, where Γ, the center of symmetry in Q
�

, is a connected timelike curve comprising the

points in Q
�

fixed by the SO � 3 � -action, S � Σ � SO � 3 � is a connected spacelike curve, and Γ and S

intersect in a single point p.
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Figure 3.1: The 2-dimensional Lorentzian quotient manifold Q

�
.

Suppose we choose double null coordinates � u � v � on � 2 , such that the Minkowski metric η

takes the form η � � dudv and the positive u- and v-axes are at 135 : and 45 : from the usual positive

x-axis, respectively. We assume that �8� 2 � η � is time oriented in the usual way such that u and v are

both increasing toward the future. Then with respect to the conformal embedding, the metric on Q
�

takes the form � Ω2dudv, and suppressing pullback notation, the original metric g may be expressed

g � � Ω2dudv � r2ds2 � (3.1)

where as before ds2 � dθ2 � sin2θdφ2 is the standard metric on S2, and Ω � Ω � u � v � and r � r � u � v �
are smooth functions on Q

�
such that Ω � 0, r * 0, and r � q � � 0 if and only if q 1 Γ. Define the

Hawking mass by

m � m � u � v � � r
2
� 1 � 4Ω � 2∂ur ∂vr

�
; (3.2)
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we require that m be uniformly bounded along S. Finally, we assume that Q
�

is foliated by con-

nected constant u curves with past endpoint on Γ 
 S and also by connected constant v curves with

past endpoint on S, called “outgoing” and “ingoing” null curves, respectively.

For convenience, let us choose units such that Einstein’s equations (2.1) instead take the form

Rab � 1
2 Rgab � 2Tαβ � (3.3)

By direct computation (see appendix B), we find that equation (3.3) for the metric (3.1) on M reduces

to the following system:

2Tuu � � 2 � ∂2
uur
�
r � 1 � 4 � ∂uΩ

� � ∂ur
� � Ωr

� � 1 (3.4)

2Tuv � 2 � ∂2
uvr
�
r � 1 � 2 � ∂ur

� � ∂vr
�
r � 2 � 1

2 r � 2Ω2 (3.5)

2Tvv � � 2 � ∂2
vvr
�
r � 1 � 4 � ∂vΩ

� � ∂vr
� � Ωr

� � 1 (3.6)

2T ;; Sr
� < � 4r � ∂2

uvr
�
Ω � 2 � 4r2 � ∂2

uvΩ
�
Ω � 3 � 4r2 � ∂uΩ

� � ∂vΩ
�
Ω � 4 = gS2 4 (3.7)

Clearly in order for equation (3.7) to hold, we must require that the stress-energy tensor Tab be

invariant under the SO � 3 � action. Each of equations (3.4), (3.5), and (3.6) holds pointwise at all

p �'� u � v� θ � φ � 1 M, but the right-hand sides only depend on the u and v coordinates. Thus, assuming

that this system of equations is satisfied, i.e. that � M � g � is indeed a spacetime, the component

functions Tuu, Tuv, and Tvv of the stress-energy tensor descend to functions on the quotient manifold

Q
�

and satisfy (3.4), (3.5), and (3.6) there as well. In fact, henceforth we consider equations (3.4),

(3.5), and (3.6) only as pointwise equations on Q
�

. We can restate them in terms of the Hawking

mass m:

∂u � Ω � 2∂ur
� � � rΩ � 2Tuu (3.8)

∂v � Ω � 2∂vr
� � � rΩ � 2Tvv (3.9)

∂um � 2r2Ω � 2 � Tuv∂ur � Tuu∂vr
�

(3.10)

∂vm � 2r2Ω � 2 � Tuv∂ur � Tvv∂vr
� 4 (3.11)

Observe that we have now dropped equation (3.7) from our system in the move to the quotient

setting. (The addition of equation (3.2) to the system accounts for there still being four equations.)

The idea is that, if we can find r, m, and Ω solving equations (3.8)-(3.11) on Q
�

for prescribed
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functions Tuu, Tvv, and Tuv, then we can define the remaining components of the stress-energy tensor

via (3.7) when we move back upstairs and thus obtain a full solution to the Einstein field equa-

tions. Thus, because we can pass back and forth between the 2-dimensional manifold and the

4-dimensional one without losing any information about the metric, we may consider the two to be

interchangeable. Without risk of confusion, then, we will refer to both M and Q
�

as the spacetime.

Recall that one of the initial assumptions was that � M � g � satisfy the dominant energy condition.

In terms of the component functions of the stress-energy tensor on Q
�

, this taken to mean that

Tuu * 0 � Tuv * 0 � and Tvv * 0 (3.12)

at all points � u � v � 1 Q
�

[13].

3.2 Penrose diagrams

Our setup now includes a 2-dimensional Lorentzian manifold Q
�

conformally embedded into Min-

kowski space �8� 2 � η � . The conformal embedding does not change causal relationships between

points, so its image still carries the full causal structure of the original manifold. A graphical de-

piction of this conformal image Q
�

in the plane is called a Penrose diagram of M. In particular,

since the null directions u and v are at 135 : and 45 : from the horizontal, we can easily determine

global geometric and causal information by inspection; e.g. in Figure 3.2 below, we can read off

the following causal and incidence relations: p � q � x 1 S, γ1 � γ2 � γ3 1 S, q �1 J ��� p � 
 J
� � p � , x 1 I

� � p � ,
p � γ1 > γ2 > γ3, and that γ1, γ2, and γ3 are spacelike, timelike, and null, respectively.

In the next section, we will identify and make assumptions about certain subsets of the boundary

Q
� �

Q
�

of the quotient manifold; as we shall see, this boundary information can also be read off

of the associated Penrose diagram. Indeed, Penrose diagrams may be considered to be expressions

of fully rigorous mathematical statements about causal and incidence relationships in Q
�

and its

conformal boundary.

3.3 Black hole spacetimes

In our 2-dimensional setting, we can now make rigorous the definition of a black hole as suggested

in Section 2.2. First, however, we translate some of our trapped surface notions into this quotient

manifold setting. Each point � u � v � of Q
�

represents a two-sphere of radius r � r � u � v � in the original
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Figure 3.2: A basic Penrose diagram.

manifold M, and the two future null directions orthogonal to this sphere are precisely ∂u and ∂v.

Since we have labeled u as the “ingoing” direction and v the “outgoing” direction, we will use θ �
and θ � to denote the expansions in the directions ∂u and ∂v, respectively. The induced Riemannian

metric on this two-sphere is of course just hab � r2 � gS2
�
ab. A straightforward calculation now shows

that θ � � 2 � ∂ur
�
r � 1 and θ � � 2 � ∂vr

�
r � 1; see Appendix C. Since r is strictly positive away from the

center of symmetry Γ, the signs of θ � and θ � are exactly those of ∂vr and ∂ur, respectively.

We define three regions of spacetime: the regular region

R �'�?� u � v � 1 Q
�

: ∂vr � 0 and ∂ur � 0  �
the trapped region

T �'�?� u � v � 1 Q
�

: ∂vr � 0 and ∂ur � 0  �
and the marginally trapped set,

A �@�?� u � v � 1 Q
�

: ∂vr � 0 and ∂ur � 0  04
An anti-trapped surface is one for which ∂ur * 0. In order to gain some necessary control over

the quotient manifold Q
�

, we now introduce the new assumption that there are “no anti-trapped

surfaces initially”, i.e. that ∂ur � 0 along S. With this assumption, we have the following result of

Christodoulou’s (see [8, 13]):

Proposition 1. Q
� � R 
 T 
 A , that is, anti-trapped surfaces cannot evolve if none are present

initially.
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Proof. We have assumed that all ingoing null curves, constant-v curves, have past end-point on S.

We integrate equation (3.8) along any such curve: for any � u0 � v0
� 1 S, we have

Ω � 2 � ∂ur
� � u � v0

� � Ω � 2 � ∂ur
� � u0 � v0

� ��A u

u0

r Ω � 2Tuu � u � v0
�
du 4

Since we have assumed that ∂ur � 0 along S and that Tuu * 0 everywhere, the righthand side of this

equation is strictly negative, and hence so is the left-hand side.

We are now in a position to define future null infinity rigorously. First observe that the boundary

curve S must have a unique endpoint in Q
� �

Q
�

; by analogy with the asymptotically flat case, call

it i0. Next, let

U �@� u : sup
v: � u B v �DC Q E r � u � v � � ∞  04

This set may well be empty, even if r goes to infinity along S. If u 1 U, however, then there exists a

unique value of the v-coordinate, say v  � u � , such that � u � v  � u �/� 1 Q
� �

Q
�

, i.e. limv F v G � u � r � u � v � �
∞. Define

I
� �IH

u C U

� u � v  � u �/� 4
Then, if it is not empty, I

�
is called future null infinity.
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Figure 3.3: Future null infinity, I
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.

Proposition 2. If it is not empty, I
�

is a connected ingoing null ray with past limit point i0.
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Proof. Suppose i0 �@� U � V � . By Proposition 1, we know that ∂ur � 0 throughout Q
�

, so r decreases

along each ingoing null ray. It follows that for any v0 � V , r is bounded above on � v 2 v0  > Q
�

by

its supremum on � v 2 v0  > S, which is necessarily finite. Thus if � u � v � 1 I
�

, we must have v * V .

On the other hand, we have assumed that Q
�

is foliated by ingoing null rays with past endpoint on

S, and so we must have Q
� �J� v 2 V  ; thus I

� �J� v � V  .
Now suppose that � u0 � V � 1 I

�
. Then since ∂ur � 0 in Q

�
, for any u � u0 we have r � u0 � v � �

r � u � v � for all v � V . On the other hand, by definition of I
�

, we have supv K V r � u0 � v � � ∞. Thus we

must have supv K V r � u � v � � ∞, so � u � V � 1 I
�

as well, and hence we must have � U � u0 "&# � V  L� I
�

.

This proves the proposition.

We now make one final assumption, that I
�

is not empty. This assumption insures that Q
�

represents a (possible) black hole spacetime. Define the domain of outer communications as before

to be J � � I � � > Q
�

, and the black hole region to be Q
� �

J � � I � � (note that it could be empty). The

event horizon of the black hole is then H � ∂ � J � � I � �/� > Q
�

. See Figure 3.4 for a representative

Penrose diagram.
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Figure 3.4: The black hole region B � Q
� �

J � � I � � .
Recall that in our discussion in Section 2.3, we mentioned results which indicated that any

trapped surface must lie inside a black hole, but only when an additional technical condition was

imposed; here there are no extra hypotheses, and we have just

Proposition 3. The domain of outer communications is contained in the regular region, i.e. J � � I � � >
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Q
� � R . In other words, any spherically symmetric trapped surface (corresponding to a point� u � v � 1 Q

�
) must lie inside the black hole region.

Proof. Fix some point � u0 � v0
� 1 Q

�
and integrate equation (3.9) along an outgoing null ray, say the

curve u � u0. As in the proof of Proposition 1, we get

Ω � 2 � ∂vr
� � u0 � v � � Ω � 2 � ∂vr

� � u0 � v0
� � A v

v0

r Ω � 2Tvv � u0 � v � dv 4
If � u0 � v0

� 1 T 
 A , then by definition � ∂vr
� � u0 � v0

�)2
0, which in turn implies that the right-hand

side of the equation is nonpositive, since Tvv * 0 from (3.12), the dominant energy condition. Thus� ∂vr
� � u0 � v � is a non-increasing function of v, so the whole outgoing null ray must lie entirely in

T 
 A . But this in turn implies that r � u0 � v � itself is a nonincreasing function of v along the ray, and

so supv: � u0 B v �DC Q E r � u0 � v �O2 r � u0 � v0
� � ∞. From Proposition (2), we know that I

�
is connected and

has past limit point i0, so we can conclude that no portion of it can extend into the causal future of

the ray � u � u0  , and hence � u0 � v0
� �1 J ��� I �	� . This completes the proof.
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Chapter 4

EXAMPLES OF MARGINALLY TRAPPED TUBES

In our 2-dimensional quotient manifold Q
�

, the marginally trapped region A forms the bound-

ary between the trapped and regular regions, T and R , and since it is the zero set of ∂vr, it is a

hypersurface in Q
�

. Since each point � u � v � 1 A has one negative expansion and one expansion

identically zero, A is in fact (the quotient of) a marginally trapped tube (MTT). We saw in the previ-

ous section that, with the dominant energy condition imposed, the domain of outer communications

J ��� I �	� > Q
�

lies in the regular region R , so in particular this MTT A must lie within the black hole

region. The examples and problems we will consider here concern the both the asymptotic behavior

as well as the causal character of A .

4.1 Schwarzschild spacetime

As mentioned earlier, the Schwarzschild solution describes the vacuum exterior gravitational field

of a static, spherically symmetric body. In spherical coordinates � t � r� θ � φ � , in which t corresponds

to time, r is a radial coordinate, and θ and φ are the usual spherical coordinates on S2, the metric

takes the form

g � �QP 1 � 2M
r R dt2 � P 1 � 2M

r R � 1

dr2 � r2gS2 � (4.1)

where M is a constant (typically interpreted as the mass of the spherically symmetric body), and gS2

is the usual round metric on S2. Notice that as r
(

∞, g tends to � dt2 � dr2 � gS2 , the Minkowski

metric, so g is indeed asymptotically flat.

In the vacuum Schwarzschild spacetime, one finds the simplest possible configuration of the

regions R , T , and A . The regular region R coincides exactly with the domain of outer communi-

cations, the trapped region T is exactly the black hole region, and the marginally trapped tube A

is the event horizon. To see this, let us find double-null coordinates u and v for the Schwarzschild

metric. We begin by defining the so-called Eddington-Finkelstein tortoise coordinate,

r  � r � 2M ln ;;; r
2M � 1 ;;; � (4.2)



22

and then set u � t � r  and v � t � r  . One easily computes that�QP 1 � 2M
r R dt2 � P 1 � 2M

r R � 1

dr2 � �'P 1 � 2M
r R dudv4

Here it appears as though the metric will become singular as r approaches 2M, but the apparent

singularity is just an artifact of the choice of coordinates; in the Eddington-Finkelstein coordinates� v� r� θ � φ � , the metric instead becomes

g � �QP 1 � 2M
r R dv2 � 2dvdr � r2gS2 �

and it is clear that there is no true metric singularity at r � 2M.

Setting r  � r  � u � v � , on the one hand we compute from (4.2) that

∂vr  � P 1 � 2M
r R � 1

∂vr�
and on the other hand, since t � u � r  , we have v � u � 2r  , and hence

∂vr  � 1
2
4

Thus

∂vr � 1
2 P 1 � 2M

r R �
and using the Eddington-Finkelstein coordinates � v� r � on Q

�
, we have

R �'�?� v� r � : r � 2M  �
T �@�?� v� r � : r � 2M  �

and

A �'�?� v� r � : r � 2M  04
Using these coordinates, it is not easy to actually compute the location of the black hole in the

sense of Section 3.3. It is well established, however, that the event horizon H of the Schwarzschild

solution is precisely the null hypersurface �?� v� r � : r � 2M  and the black hole is B �%�?� v� r � : r �
2M  (see, e.g., [22]). Thus we see that, in this spacetime, the marginally trapped tube is a non-

expanding horizon coinciding with the event horizon, A � H , and the trapped region is precisely

the black hole, T � B .
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Figure 4.1: The fully extended Schwarzschild spacetime with Cauchy surface S. The extension has
two asymptotically flat ends, each containing an event horizon for the black hole B . The region
labeled W is a white hole, which has exactly the time-reversed properties of B .

4.2 Vaidya spacetimes

The simplest example of a black hole spacetime in which one sees an MTT which does not coincide

with the event horizon is in the Vaidya spacetime. This spacetime is a generalization of Schwarz-

schild which models null dust in spherical symmetry. The metric is given in coordinates � v� r� θ � φ �
by

g � � P 1 � 2M � v �
r R dv2 � 2dvdr � r2 S dθ2 � sin2θdφ2 T �

for some smooth function M � v � . Then g satisfies the Einstein field equations with stress-energy

tensor

T � Ṁ � v �
4πr2 dv2 �

and one can check that the dominant energy condition is satisfied if and only if Ṁ � v � * 0. Further-

more, if M � v � is constant, M � v � � M, then g reduces to the usual Schwarzschild metric. Now, it is

not possible to transform the metric from these so-called radiation coordinates � v� r � into double-null

coordinates for general functions M � v � [23]. But we can still obtain information about the regular,

marginally trapped, and trapped regions of the spacetime by working with the radiation coordinates.

In particular, we compute that each 2-sphere � v� r � has future directed null vector fields�U� ∂v � P 1
2 � M � v �

r R ∂r (the outer null normal),



24

and

n � � ∂r (the inner null normal) 4
We compute further that

θ ����� � θ � � 1
r � 2M � v �

r2

and

θ � n � � θ � � � 2
r
4

Thus, in the quotient manifold with metric g � �'V 1 � 2M � v �
r W dv2 � 2dvdr, we have

R �'�?� v� r � : r � 2M � v �  �
T �@�?� v� r � : r � 2M � v �  �

and

A �'�?� v� r � : r � 2M � v �  04
The induced metric on A is

h � 2drdv � 2 � 2Ṁ � v � dv
�
dv � 4Ṁ � v � dv2 �

so A is a null hypersurface wherever Ṁ � v � � 0 and spacelike wherever Ṁ � v � � 0, i.e. a non-

expanding horizon or a dynamical horizon, respectively.

The cases we are interested in are those in which M � v � is zero until some finite v, say v � 0, and

then grows monotonically, either reaching an asymptotic value M0 as v approaches ∞, or reaching

this value at some finite value v � v0 and remaining constant thereafter. Each of these two cases is

depicted in Figure 4.2. In particular, the former case is the marginally trapped tube A is a dynamical

horizon, thought to be asymptotic to the event horizon; in the latter case, A is a dynamical horizon

up until v � v0, after which it becomes a non-expanding horizon, thought to coincide with the event

horizon [4]. In Section 5.4.2, we show as an application of the main theorem that the marginally

trapped tube does indeed have the asymptotic behavior ascribed to it in the former case.
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Figure 4.2: Penrose diagrams for the Vaidya spacetime in which M � v � � 0 for v
2

0. In both panels,
the region to the past of v � 0 is flat. In the left panel, as v tends to infinity, M tends to a constant
value M0; the spacelike marginally trapped tube, the null event horizon H and the timelike surface
r � 2M0 all meet tangentially at i

�
. In the right panel, M � M0 for v * v0, and the spacetime to the

future of v0 is isometric with a portion of the Schwarzschild spacetime; the marginally trapped tube
and the event horizon H meet tangentially at v � v0.

4.3 Spherically symmetric Einstein-Maxwell-scalar field spacetimes

Spherically symmetric spacetimes in which gravity is coupled with electromagnetism alone are

given by a 2-parameter family of metrics known as the Reisner-Nordström solutions; in these space-

times, as in the Schwarzschild solution, the MTTs always coincide with the event horizon. In

spherically symmetric Einstein-scalar field spacetimes, the work of Christodoulou shows that the

MTT will always be achronal and either coincide with or be asymptotic to the event horizon [8].

A more sophisticated example of MTT behavior arises when one couples gravity with electromag-

netism and a scalar field. In general, a solution to the Einstein-Maxwell-scalar field equations is a

4-tuple � M � g � Fαβ � φ � , where � M � g � is a Lorentzian 4-manifold, the electromagnetic field Fαβ is an

anti-symmetric 2-tensor satisfying the source-free Maxwell equations

F B βαβ � 0 � FYαβ B γ Z � 0 � (4.3)

the (massless) scalar field φ is a smooth function satisfying

gαβφ;αβ � 0 � (4.4)
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and the Einstein field equations (3.3) are satisfied with stress-energy tensor

Tαβ � φ;αφ;β � 1
2 gαβφ;γφ;γ � FαγF

γ
β � 1

4 gαβFγ
δ Fδ

γ 4
To impose spherical symmetry on the system, one requires not only that � M � g � satisfy all the as-

sumptions made in Section 3, but also that F and φ be invariant under the SO � 3 � action.

A careful analysis of the interiors of black holes in Einstein-Maxwell-scalar field spacetimes

was undertaken by Mihalis Dafermos in [10] and [11]. In [11], Dafermos solves a spherically sym-

metric, double characteristic initial value problem for the Einstein-Maxwell-scalar field equations,

prescribing the initial data in such a way that, in the maximal development of the data, the “tail”

of the massless scalar field φ decays at a certain rate with respect to an outgoing null coordinate v

along the event horizon, namely [
∂vφ

[ 2
Cv � 1 � ε (4.5)

for v large, ε � 0 arbitrarily small. Then, as part of the proof of a much broader theorem, he

shows that the marginally trapped tube A is achronal with no ingoing null components and that it

terminates at i
�

(the future limit point of I
�

); in particular, A is composed of segments of dynamical

and non-expanding horizons and is asymptotic to the event horizon.
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Figure 4.3: A marginally trapped tube which eventually becomes achronal and is asymptotic to the
event horizon H .

Furthermore, in [16], Dafermos and collaborator Igor Rodnianski show that, given any asymptot-

ically flat, spacelike, spherically symmetric initial data for the Einstein-Maxwell-scalar field equa-
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tions such that the scalar field φ and its gradient have compact support along the initial hypersurface,

if the 2-dimensional Lorentzian quotient manifold Q
�

of its future Cauchy development contains at

least one trapped surface, then either “the black hole is extremal in the limit” or[
∂vφ

[ 2
Cv � 3 � ε (4.6)

for large v along the event horizon, where again v is a naturally defined outgoing null coordinate and

ε � 0 is arbitrarily small. The former statement means that the quantity m � e2

2r � [ e [ ( 0 as v
(

∞

along the event horizon, where the constant e is the charge of the electromagnetic field Fαβ. Since it

is generally thought that e �]� m in astrophysically reasonable situations, such a scenario is in some

sense unphysical. The decay rate in (4.6) is widely known as Price’s law [20].

Clearly (4.6) is considerably stronger than (4.5), so we may combine these two results and

conclude that in general, an MTT in an Einstein-Maxwell-scalar field spacetime must be asymptotic

to the event horizon of the black hole, at least as long as the latter is non-extremal as described

above.
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Chapter 5

ASYMPTOTIC BEHAVIOR OF MTTS WITH ARBITRARY MATTER

In this chapter, we give conditions on a general stress-energy tensor Tαβ in a spherically sym-

metric black hole spacetime which are sufficient to guarantee both that the black hole will contain

a (spherically symmetric) marginally trapped tube and that that marginally trapped tube will be

achronal, connected, and asymptotic to the event horizon. We then derive some additional results

pertaining to the affine lengths of both the black hole event horizon and the marginally trapped tube

and show how our main result can be applied in Vaidya spacetimes.

As described in Chapter 3, it is both natural and convenient to formulate and prove these state-

ments about spherically symmetric spacetimes at the level of the 1+1 Lorentzian manifold obtained

by taking a quotient of the SO � 3 � -action by isometries. In particular, we restrict ourselves to a char-

acteristic rectangle in Minkowski 2-space with conformal metric and past boundary data constrained

in such a way that the rectangle could indeed lie inside the quotient of a spherically symmetric black

hole spacetime, with one of its edges coinciding with the event horizon. In order to make this regime

both generic and physical, we assume that our spacetime is the maximal future development of some

initial data for the metric and the stress-energy tensor prescribed along the two past edges of this

characteristic rectangle. We use no explicit evolution equations for Tαβ, but we assume that one or

more exist and that the resulting Tαβ satisfies the dominant energy condition throughout the maximal

development. We also impose a nontrivial extension principle, one which arises in the evolutionary

setting for many physically reasonable matter models. Our conditions then take the form of four

inequalities which must hold near a point which we call future timelike infinity and denote by i
�

.

The inequalities relate components of the stress-energy tensor to the conformal factor and radial

function for the metric.

It is worth mentioning that the conditions we impose on Tαβ do not directly include or imply

Price’s law. Originally formulated as an estimate of the decay of radiation tails of massless scalar

fields in the exterior of a black hole [20], the appellation “Price’s law” is now widely used to refer
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to inverse power decay of any black hole “hair” along the event horizon itself; see Section 4.3. As

noted there, in addressing the double characteristic initial value problem for the Einstein-Maxwell-

scalar field equations, Dafermos showed that imposing a weak version of Price law decay on data

along an outgoing characteristic yields a maximal future development which does indeed contain

an achronal marginally trapped tube asymptotic to the event horizon. Consequently, one might have

expected such decay to be central for obtaining the same result in the general setting. In what

follows, however, we show that the analogous decay of Tvv (v an outgoing null coordinate) is only a

priori related to the length of the marginally trapped tube, not its terminus. The conditions we use

instead to control the tube’s asymptotic behavior entail only smallness and monotonicity of certain

quantities.

However, it appears that some sort of decay is always necessary in order to retrieve our con-

ditions in practice. Indeed, in the self-gravitating Higgs field setting, our conditions follow rather

naturally from the assumption of weak Price-law-like decay on the derivatives of the scalar field

and the potential (Theorem 3), exactly analogously to Dafermos’ result for Einstein-Maxwell-scalar

fields. On the other hand, in Theorem 4, we are able to derive these conditions without making

use of an explicit decay rate, instead using only smallness and monotonicity, and indeed one can

construct examples which satisfy our conditions but violate even the weak version of Price’s law.

Still, the specific monotonicity assumptions are themselves quite strong and do imply decay, if not

that which is specifically called Price’s law.

5.1 First assumptions

5.1.1 Spherical symmetry & the initial value problem

Recall that the study of spherically symmetric 3+1-dimensional spacetimes is essentially equivalent

to the study of conformal metrics on subsets of �8� 2 � η � , and the relative simplicity of the latter

recommends it as a starting point. Without a priori knowledge about an “upstairs” spacetime � M � g �
or the embedding Q ^ ( � 2 , it is natural to begin with a generalized initial value problem for the

system (3.8)-(3.11).

First, for any values u � v � 0, we use K � u � v � to denote the characteristic rectangle given by

K � u � v � ��! 0 � u "_# ! v� ∞ � 4
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Next, suppose we choose some values u0 � v0 � 0, fix the specific rectangle K � u0 � v0
�
, and define ini-

tial hypersurfaces Cin ��! 0 � u0 "`# � v0  and Cout �'� u0  # ! v0 � ∞ � . These are the initial hypersurfaces

along which to prescribe initial data for the metric, namely r and Ω (or m) and their derivatives. In

a specific matter model, one would specify exactly how to prescribe these data, but since we are

working in the most general case, we simply assume that this has been done in such a way that the

four equations (3.8)-(3.11) are satisfied and r� Ω � 0 on Cin 
 Cout . Next, specifying just the initial

data for Tαβ is not quite sufficient for our purposes, since we are working with a general stress-

energy tensor with no evolution equations of its own beyond those imposed by the Bianchi identity,

divgT � 0. We therefore assume not only that the functions Tuu, Tuv, and Tvv have been prescribed

along Cin 
 Cout , but also that there is some field equation governing their evolution into the interior

of K � u0 � v0
�
. We then assume that we obtain the maximal future development with respect to the

system (3.8)-(3.11), G � u0 � v0
� � K � u0 � v0

�
. (Again, if we were working in the context of a specific

matter model, we would cite (or prove!) a global existence result here. But in our situation, we

must confine ourselves to assuming one.) The spacetime � G � u0 � v0
� � � Ω2 dudv

�
is the one we are

interested in; see Figure 5.1 for a Penrose diagram.
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Figure 5.1: The characteristic rectangle K e u0 f v0 g contains the maximal future development
G e u0 f v0 g of initial data prescribed on Cin h Cout .

5.1.2 Black hole & energy assumptions

In this section, we make a number of assumptions to which we will refer later, namely in the state-

ment and proof of our main result. These assumptions are the basic requirements that our stress-
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energy tensor components and the initial data and their maximal development must satisfy in order

to be physically reasonable and relevant to black hole spacetimes. We label them here with upper-

case Roman numerals for convenience.

First, on physical grounds, we want the “upstairs” stress-energy tensor Tαβ to satisfy the domi-

nant energy condition. In the 1+1-setting, this condition yields the following pointwise inequalities

at the quotient level:

I Tuu * 0 � Tuv * 0 � and Tvv * 0 4
Second, because we are not working with a specific global existence result in an evolution-

ary setting, we explicitly require that the maximal development G � u0 � v0
�

obtained in the previous

section be a past subset of K � u0 � v0
�
, i.e.

II J ��� G � u0 � v0
�/� � G � u0 � v0

�
.

Next, we assume that along Cout the functions r and m satisfy

III r
2

r � ,

and

IV 0
2

m
2

m � ,

where the constants r � , m � � ∞ are chosen to be the respective suprema of r and m along Cout .

Since our aim is to say something about the interiors of spherically symmetric black holes, we want

to choose the data on the initial hypersurface Cout of our characteristic rectangle K � u0 � v0
�

to insure

that they would agree with that we would find along (the quotient of) the event horizon in a general

spherically symmetric black hole spacetime, and assumption III provides this correspondence. In

particular, the boundedness of r along Cout is precisely the requirement that Cout must satisfy in order

to lie inside a black hole in (the quotient of) an asymptotically flat spacetime, at least provided the

black hole has bounded surface area (or equivalently, bounded entropy); see Section 3.3. Since Cout

is necessarily defined for arbitrarily large values of v, while outgoing null rays past the event horizon

need not be, it is natural to interpret Cout as lying along the event horizon itself. For this reason we

will often refer to its terminal point � 0 � ∞ � — which is not in the spacetime, strictly speaking — as
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i
�

, future timelike infinity. The first inequality of IV is physically natural, since it just requires that

the quasi-local mass m be nonnegative, while the second inequality is actually slightly redundant:

given equation (3.2), the boundedness of m along Cout follows immediately from the fact that it is

nonnegative and that r is bounded. Indeed, we must have the relation m � 2 1
2 r � .

We next impose the assumption that no anti-trapped surfaces are present initially (cf. Section

3.3):

V ∂ur � 0 along Cout .

Proposition 1 then says that G � u0 � v0
� � R 
 T 
 A ; see Figure 5.2 for a representative Penrose

diagram. Assumption V thus guarantees that a spacelike marginally trapped tube in G � u0 � v0
�

is

indeed a dynamical horizon as defined in Section 2.4, since that definition requires both that θ � � 0

and θ ��� 0 along A .
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Figure 5.2: The spacetime G e u0 f v0 g comprises the regular and trapped regions, R and T , and a
marginally trapped tube A , shown here as a dotted curve. Note that the marginally trapped tube
shown is not achronal, but it does comply with Proposition 4.

Before continuing, we note that a consequence of the dominant energy condition (assumption

I), the Einstein equations (3.8)-(3.11), and our definitions of A and T is the following proposition

due to Christodoulou, which will be of considerable use later on:

Proposition 4. If e u f v gUi T h A , then e u f v j gOi T h A for all v jlk v. Similarly, if e u f v g)i T , thene u f v j g�i T for all v jUk v.
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Proof. Integrating (3.9) along the null ray to the future of � u � v � yields� Ω � 2∂vr
� � u � v  � �%� Ω � 2∂vr

� � u � v � � A v G
v

r Ω � 2Tvv � u � V � dV

for v  � v. Since Tvv * 0 everywhere by assumption I, the righthand side of this equation will

be nonpositive if � Ω � 2∂vr
� � u � v �m2 0, and strictly negative if � Ω � 2∂vr

� � u � v � � 0. Since Ω � 0

everywhere, both statements of the proposition now follow immediately.

In a black hole spacetime, the trapped region T must be contained inside the black hole. Since

we would like Cout to represent an event horizon, we must therefore require that ∂vr * 0 along

Cout . Combining this inequality with Proposition 4, we see that if A intersects Cout at a single

point, then the two must in fact coincide to the future of that point. This is indeed the case in the

Schwarzschild and Reisner-Nordström spacetimes, in which the black hole coincides exactly with

the trapped region T . However, we are really only interested in the cases in which the marginally

trapped tube A does not coincide with the event horizon, so we will instead assume

VI 0 � ∂vr along Cout .

Note that assumptions II and VI and the fact that r � 0 on Cin 
 Cout now together imply that

r � 0 everywhere in G � u0 � v0
�
. Furthermore, it is now clear that the values r � and m � specified in

assumptions III and IV are in fact the asymptotic values of r and m along Cout , respectively (the

monotonicity of m follows from assumption I and equation (3.11)).

Finally, we will need to assume that G � u0 � v0
�

satisfies the extension principle formulated in

[13]. This principle holds for self-gravitating Higgs (scalar) fields and self-gravitating collisionless

matter [12, 14], and it is expected to hold for a number of other physically reasonable models [13].

Let Γ denote the center of symmetry of G � u0 � v0
�
, the set of points p at which r � p � � 0, and regard

set closures as being taken with respect to the topology of K � u0 � v0
�
. Then the extension principle

may be formulated as follows:

VII If p 1 R
�
Γ � and q 1 R > I � � p � such that J � � p � > J

� � q �n� � p  o� R 
 A , then p 1 R 
 A .

5.2 Achronality & connectedness

The proof of our main result, Theorem 1, which appears in Section 5.3.1, relies on two more general

propositions, both of which are of interest in their own right. These propositions require a weak
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version of one of the four conditions appearing in Theorem 1, a condition which we now state

separately:

A TuvΩ � 2 � 1
4r2 .

In practice, we will only require that condition A hold in some small subset of our spacetime

G � u0 � v0
�
. The expression Tuv Ω � 2 takes a particularly simple form in many matter models. For a

perfect fluid of pressure P and energy density ρ, it is the quantity 1
4 � ρ � P

�
. For a self-gravitating

Higgs field φ with potential V � φ � , it is 1
2V � φ � . And for an Einstein-Maxwell massless scalar field of

charge e, it is 1
4 e2r � 4.

Proposition 5. Suppose � G � u0 � v0
� � � Ω2 dudv

�
is a spacetime obtained as in Section 5.1.1 with

radial function r, and suppose it satisfies assumptions I-VII of Section 5.1.2. If A is nonempty and

condition A holds in A , then each of its connected components is achronal with no ingoing null

segments.

Remark: In [6], Booth, et al. give a necessary and sufficient condition for a general marginally

trapped tube (not necessarily spherically symmetric) to be achronal; that condition is precisely A

in our setting. The proof of Proposition 5 essentially duplicates their reasoning, although it is

formulated somewhat differently.
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Proof. To begin, we must establish that A is in fact a hypersurface in G � u0 � v0
�
. Since A is defined

as a level set, this is equivalent to showing that 0 is a regular value of ∂vr, i.e. that the differential

D � ∂vr
�

is non-degenerate at points where ∂vr � 0. Since D � ∂vr
�

has components ∂2
uvr and ∂2

vvr, it

suffices to show that ∂2
uvr � 0 along A .

Rearranging equation (3.10) and then combining with equations (3.8) and (3.2) yields

2r2Ω � 2Tuv∂ur � 2r2Ω � 2Tuu∂vr � ∂um� 1
2 � ∂ur

� � 2 � ∂ur
� 2 � ∂vr

�
Ω � 2 � 2r � ∂2

uvr
�
Ω � 2 ∂ur�

and solving for ∂2
uvr, we obtain

∂2
uvr � � 1

2Ω2r � 2α � (5.1)

where α is given by

α � m � 2r3 Ω � 2Tuv 4 (5.2)

Since r and Ω are strictly positive in G � u0 � v0
�
, it is enough to show that α � 0 along A . Using

condition A and the fact that ∂vr � 0 on A , we have

α � m � 2r3 Ω � 2Tuv� r
2 � 2r3 Ω � 2Tuv� r3

2 � 1
r2 � 4Ω � 2Tuv

�� 0 �
so ∂2

uvr � 0 along A as desired.

Now, we have A u� /0, and since we now know it is a 1-dimensional submanifold of the spacetime,

we can parameterize some connected component by a curve γ � t � ��� u � t � � v � t �/� . Since ∂vr � 0 along

A , at points on A we have

γ̇ � ∂vr
� � 0 � du

dt
� ∂2

uvr
� � dv

dt
� ∂2

vvr
� 4 (5.3)

By the result of Proposition 4, we know that we can describe all but the outgoing null segments

of A in terms of a function v � u � , defined on some (possibly disconnected) subset of ! 0 � u0 " . From

equation (5.3) we see that its slope is given by

dv
du
� dv � dt

du � dt
� � ∂2

uvr
∂2

vvr
(5.4)
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at points where ∂2
vvr u� 0.

Showing that A is achronal thus amounts to showing that this slope dv
du

2
0 wherever it is defined,

since the points at which the slope is not defined correspond to points on outgoing null segments. In

fact, we will show that, where it is defined, dv
du � 0, thereby excluding the possibility of ingoing null

segments.

Expanding the lefthand side of (3.9), we see that along A ,

Ω � 2∂2
vvr � � r Ω � 2Tvv �

or rather,

∂2
vvr � � rTvv 4 (5.5)

Substituting equations (5.5) and (5.1) into equation (5.4) then yields

dv
du

� � Ω2α
2r3Tvv

4
Since r, Ω, and α are all positive along A and Tvv is nonnegative by assumption I, the dominant

energy condition, we conclude that dv
du � 0 at points along A at which Tvv � 0, which is exactly what

was needed.

For technical reasons, in the next proposition we use K � u0 � v0
�

to denote the “compactification”

of our initial rectangle K � u0 � v0
�
, that is, K � u0 � v0

� �v! 0 � u0 "w# ! v0 � ∞ " . Set closures are taken with

respect to K rather than K so as to include points at infinity (the Cauchy horizon).

We also want to confine ourselves to regions of the spacetime in which r is close to r � , so for

any δ � 0, let

W � W � δ � �'�?� u � v � 1 G � u0 � v0
�

: r � u � v � * r � � δ  04
Proposition 6. Suppose � G � u0 � v0

� � � Ω2 dudv
�

is a spacetime obtained as in Section 5.1.1 with

radial function r, suppose it satisfies assumptions I-VII of Section 5.1.2, and suppose condition A

is satisfied in W . If G � u0 � v0
�

does not contain a marginally trapped tube which is asymptotic to the

event horizon, then W > R contains a rectangle K � u1 � v1
�

for some u1 1x� 0 � u0 " , v1 17! v0 � ∞ � .
Proof. The proposition is an immediate consequence of the following two lemmas:
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Lemma 1. Under the hypotheses of Proposition 6, if A > W u� /0, then it is connected and terminates

either at i
�

(in which case it is asymptotic to the event horizon) or along the Cauchy horizon � 0 � u0 "y#� ∞  ]� K � u0 � v0
�
. In the latter case, W > R contains a rectangle K � u1 � v1

�
for some u1 1z� 0 � u0 " ,

v1 1�! v0 � ∞ � .
Lemma 2. Under the hypotheses of Proposition 6, if A > W � /0, then W > R contains a rectangle

K � u1 � v1
�

for some u1 1�� 0 � u0 " , v1 1x! v0 � ∞ � .
Remark. The existence of the rectangle in W > R is what is required for the proof of the main result,

but the first statement of Lemma 1 establishing the connectedness of A is of independent interest.

As we will see in the proof of the lemma, that result hinges on the extension principle (VII) and the

achronality of A .

Proof of Lemma 1. First we lay some groundwork. Let S denote any connected component of ∂W >
G � u0 � v0

�
, that is, a connected component of the level set � r � r � � δ  . Since ∂ur is strictly negative

by Proposition 1, the differential Dr is nondegenerate in all of G � u0 � v0
�
, and thus S is a smooth

curve segment whose endpoints lie on ∂G � u0 � v0
�
. Parameterizing S by a curve γ � t � �{� u � t � � v � t �/� ,

we compute that

0 � γ̇ � r � �|� ∂ur
� du

dt �}� ∂vr
� dv

dt 4 (5.6)

Now, ∂vr � 0 in R and ∂ur � 0 everywhere, so du
dt and dv

dt must have the same sign in R , which in

turn implies that ~
γ̇ � γ̇ ��� � Ω2 dudv � γ̇ � γ̇ � � � Ω2 � du

dt

� � dv
dt

� � 0

— that is, S > R is timelike. Furthermore, equation (5.6) implies that if S intersects A and passes

into T , it is du
dt that changes sign, while dv

dt does not. Hence S > � R 
 A
�

must be causal with no

ingoing null segments.

Now let S0 denote the connected component of ∂W > G � u0 � v0
�

that intersects one of the initial

hypersurfaces Cin or Cout . (If no component intersects Cin 
 Cout , then without loss of generality, we

may shrink δ until one does. And by the monotonicity of r along each initial hypersurface, we can

be sure that there is at most one such component.) Then the above characterization of the causal

behavior of ∂W implies that all of S0 lies to the future of this endpoint on Cin or Cout . This past

endpoint lies in R since both initial hypersurfaces do, so S0 > � R 
 A
�

is nonempty and, by the



38

preceding argument, causal. Let q denote its future endpoint in G � u0 � v0
�
. Then J

� � q �$� � q  > W �
/0. To see this, observe that if q 1 G � u0 � v0

���
G � u0 � v0

�
, then the fact that G � u0 � v0

�
is a past set

(assumption II) in fact implies that J
� � q � > G � u0 � v0

� � /0. Otherwise, q 1 G � u0 � v0
�

and hence

q 1 A > S0, so by the choice of q and Proposition 4, the outgoing null ray to the future of q must lie

in the trapped region, i.e. � u � q �  # � v � q � � ∞ � > G � u0 � v0
� � T 4

Since r � q � � r � � δ and r is strictly decreasing along � u � q �  # ! v � q � � ∞ � > G � u0 � v0
�
,� u � q �  # � v � q � � ∞ � > G � u0 � v0

� > W � /0 4
Then the inequality ∂ur � 0 guarantees that J

� � q �&� � q  > W � /0.

Let A0 denote any connected component of A > W . We will show that it either terminates at

i
�

or along the Cauchy horizon, after which the connectedness of A > W and the statement of the

lemma will follow. Since A0 is a connected curve segment, it has endpoints p0 and p1 in G � u0 � v0
�
.

By Proposition 5, A0 is achronal with no ingoing null segments, so if p0 u� p1, then one of p0 and

p1 must have v-coordinate strictly larger than the other — without loss of generality, suppose it’s

p1 ��� u  � v  � . (See Figure 5.4 for a Penrose diagram depicting A0 and S0.) Then for any point� u � v � 1 A0, the achronality of A0 implies that u * u  and v
2

v  . Our goal is to show that v 5� ∞,

for then A0 terminates either at i
� ��� 0 � ∞ � or along the Cauchy horizon ! 0 � u0 "_# � ∞  .

Now, this point p1 is either contained in the spacetime G � u0 � v0
�

itself or in its boundary,

G � u0 � v0
���

G � u0 � v0
�
, and we must employ different arguments for each case. In the former case

we will deduce that the point p1 coincides with q, the future endpoint of the curve S0 > � R 
 A
�
,

and from there derive a contradiction to how p1 and q were chosen. In the latter case, we will

use the extension principle, assumption VII, to show that if v  � ∞, then p1 is in the spacetime, a

contradiction. Thus we will conclude that p1 must indeed lie on the Cauchy horizon.

To begin, suppose that p1 1 G � u0 � v0
�
. Then p1 1 A0 > ∂W , and in particular, r � p1

� � r � � δ.

Since S0 is causal with no ingoing null segments, the v-coordinate of its endpoint q must be greater

than that of any other point on S0, i.e. v � q � � v � q̃ � for any q̃ 1 S0, q̃ u� q. Now, unless p1 lies on

S0, p1 must have v-coordinate greater than v � q � , i.e. v  * v � q � — otherwise, the fact that r � p1
� �

r � � δ and r � r � � δ along S0 would contradict assumptions V and VI, the strict monotonicity of r

along ingoing null rays and along Cout . Furthermore, p1 1 ∂W implies that p1 1 W , which in turn
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Figure 5.4: A priori, the curves S0 and A0 used in the proof of Lemma 1 may be situated as
shown. Their endpoints q, p0 and p1 may lie in the spacetime G � u0 � v0

�
or in its boundary,

G � u0 � v0
�_�

G � u0 � v0
�
. The dashed curves and diagonal lines indicate boundaries and regions which

also may or may not be part of the spacetime. Lemma 1 shows that the point p1 must in fact lie
along the Cauchy horizon.

yields that if v  * v � q � , then either p1 � q or u  � u � q � since J
� � q �`� � q  > W � /0. Thus the only

possibilities remaining are that either p1 1 S0, or u  � u � q � and v  * v � q � .
If u  � u � q � and v  * v � q � , then since p1 1 A , the outgoing null ray to the past of p1 must lie in

R 
 A by Proposition 4, but it must also contain some point q̃ 1 int � W �
. Then r � q̃ � � r � � δ, but

r � p1
� � r � � δ and ∂vr * 0 in R 
 A , a contradiction.

For the case p1 1 S0, first note that since D � ∂vr
�

is nondegenerate at p1 (see the proof of Propo-

sition 5), it must be the case that the curve A leaves W at p1 as v increases. Together with the

facts that A is achronal, S0 is causal, and p1 was chosen to be the endpoint of A0 with the largest

v-coordinate, this implies that p1 � q.

We are now in a position to derive the contradiction for this case. First note that both curves A

and ∂W must extend smoothly through p1 � q. As noted in the preceding paragraph, by definition

of A0 and p1, the curve A leaves W at p1 as v increases. On the other hand, by definition of S0 and

the characterization of its causal behavior given above, the curve ∂W must leave R 
 A at q as v

increases, passing into T ; in particular, it must become spacelike for v � v � q � . And since ∂W is

leaving R 
 A , this spacelike curve-continuation past q � p1 must lie to the future of that of A at

least locally. On the other hand, since A is leaving R 
 A at p1 � q, its continuation must lie to the

future of that of A , locally. But the two cannot coincide past p1 � q, by the choices of both p1 and
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q, so we have arrived at a contradiction.

Thus p1 cannot lie in G � u0 � v0
�
, so we must have p1 1 G � u0 � v0

���
G � u0 � v0

�
. If v  � ∞, then

consider the ingoing null ray to the past of p1, ! 0 � u  "&# � v � . Since the point � 0 � v  � 1 G � u0 � v0
�

and

G � u0 � v0
�

is open, there must exist some smallest ũ 17� 0 � u  " such that � ũ � v  � �1 G � u0 � v0
�
. Since p1

is a limit point of A but is not in the spacetime, we must have p0 u� p1, and so since A0 is achronal

with no ingoing segments, we can parameterize a portion of A0 in a neighborhood of p1 by � u � v � � v � ,
v 17� v  � ε � v  " , some ε � 0. For each value v 1�� v  � ε � v  � , the ingoing null ray to the past of the

point � u � v � � v � 1 A > W must be contained in W > R — the ray must lie in W since ∂ur � 0 along

it, and it must lie in R since ∂u∂vr � 0 in W . So in particular, if we choose some ṽ 17� v  � ε � v  � ,
then J � � ũ � v  � > J

� � 0 � ṽ �`� �?� ũ � v  �  ]� R 
 A , and hence by the extension principle, we must have� ũ � v  � 1 R 
 A as well, a contradiction. (See Figure 5.5 for a Penrose diagram of this situation.)

Thus we conclude that v �� ∞, and we are done; this is what we wanted to show.
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Cout

v � ṽ
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Figure 5.5: The dashed line indicates the boundary of the spacetime, G � u0 � v0

���
G � u0 � v0

�
. The

points p1 �%� u  � v  � and � ũ � v  � lie in this boundary, not in G � u0 � v0
�

itself. The dark-shaded rectan-
gle is the set J �5� ũ � v  � > J

� � 0 � ṽ �`� �?� ũ � v  �  to which we apply the extension principle (assumption
VII) and derive a contradiction.

Now we have shown that an arbitrary connected component of A > W must terminate along

the Cauchy horizon ! 0 � u0 "w# � ∞  , so if A > W is not connected, we can derive a contradiction as

follows: Assume that there exist multiple connected components of A > W . Then since they each

exist for arbitrarily large v, there must exist some ṽ � v0 such that ! 0 � u0 "�# � ṽ  > A > W contains

more than one point. If any two of these points are contained in the same component of A > W , we

have a contradiction to the fact that that component is achronal with no ingoing null components.

Otherwise, we have two or more connected components of A > W whose other endpoints do not
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lie on the Cauchy horizon and hence must lie in G � u0 � v0
���

G � u0 � v0
�
. Then since G � u0 � v0

�
is a

past set, there must also exist some ũ � 0 such that � ũ  # ! v0 � ∞ � intersects A > W at more than one

point, say at � ũ � v1
�

and � ũ � v2
�
, which in turn implies that the ray segment between the two points

lies entirely in A by Proposition 4. Furthermore, values of u sufficiently close to ũ must also have

this same property, which implies that A contains an open subset of G � u0 � v0
�
, contradicting the fact

that it is codimension 1.

The last statement of the lemma follows immediately.

Proof of Lemma 2. If A > W � /0, then W � R , so in fact W > R � W . Fix a reference point� u1 � v1
� 1 int � W � > R such that u1 � 0. Note that since ∂ur � 0, the past-directed ingoing null ray

behind � u1 � v1
�

must also be in int � W �
, that is, ! 0 � u1 "`# � v1  �� int � W �

.

If K � u1 � v1
�

is not wholly contained in W , then there exists some q 1z� ∂W
� > K � u1 � v1

� u� /0,

where the boundary ∂W is taken here with respect to K � u0 � v0
�

(as opposed to G � u0 � v0
�
). In partic-

ular, q cannot lie on ! 0 � u1 "�# � v1  by choice of � u1 � v1
�
, nor can it lie elsewhere in W > K � u1 � v1

�
,

since that would imply that r � q � � r � � δ, violating the monotonicity of r in R (∂vr � 0) and the

fact that r � r � � δ on ! 0 � u1 "`# � v1  . Hence q 1 G � u0 � v0
�&�

G � u0 � v0
�
.

Let v  be the smallest value in � v1 � ∞ � such that ! 0 � u1 "�# � v � > � G � u0 � v0
�w�

G � u0 � v0
�/� u� /0,

and set u  to be the smallest value in � 0 � u1 " such that � u  � v  � 1 G � u0 � v0
�w�

G � u0 � v0
�
. Then by

construction, the rectangle J � � u  � v  � > J
� � 0 � v1

�&� �?� u  � v  �  L� R , and so since r is bounded below

by r � � δ near � u  � v  � , the extension principle implies that � u  � v  � 1 G � u0 � v0
�
, a contradiction.

Thus we must in fact have � ∂W
� > K � u1 � v1

� � /0, which implies that K � u1 � v1
� � W > R .

5.3 Main result

5.3.1 Asymptotic behavior

We are now ready to state and prove our main result characterizing the asymptotic behavior of

certain marginally trapped tubes. The theorem has the immediate corollary that the event horizon of

the given spacetime must be future geodesically complete. Afterward we present a second theorem

relating the lengths of such tubes to Price law decay and indicate how both theorems apply to the

ingoing Vaidya spacetime.
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Theorem 1. Suppose � G � u0 � v0
� � � Ω2 dudv

�
is a spacetime obtained as in Section 5.1.1 with radial

function r, and suppose it satisfies the assumptions I-VII of Section 5.1.2. Define

W � δ � �'�?� u � v � 1 G � u0 � v0
�

: r � u � v � * r � � δ  
and assume that there exist a constant 0 � c0 � 1

4r2E , constants c1, c2 � 0, constants 0 � ε � 1
4r2E � c0

and v , * v0, and some small δ � 0 such that for W � W � δ � the following conditions hold:

A , Tuv Ω � 2 2 c0 in W ;

B1 Tuu �`� ∂ur
� 2 2 c1 in W > R ;

B2 ∂v � Ω � 2Tuv
� � u �/. � 1 L1 �/! v0 � ∞ �/� for all u 1x! 0 � u0 "�� and� v

v � ∂v � Ω � 2Tuv
� � u � ṽ � dṽ � ε for all � u � v � 1 W > R with v * v , ;

C � � ∂ur
�
Ω � 2 2 c2 along Cout > W 4

Then the spacetime G � u0 � v0
�

contains a marginally trapped tube A which is asymptotic to the event

horizon, i.e. for every small u � 0, there exists some v � v0 such that � u � v � 1 A . Furthermore, for

large v, A is connected and achronal with no ingoing null segments.

See Figure 5.6 for a representative Penrose diagram.
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Figure 5.6: Theorem 1 says that the spacetime must contain a (small) characteristic rectangle whose
Penrose diagram looks like this – in particular, the marginally trapped tube A is achronal and
terminates at i

�
.

Remarks: The physical meaning of condition A , , which is somewhat stronger than condition A, is

readily apparent from Proposition 5: it controls the causal behavior of the marginally trapped tube,
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if one exists. Conditions B1 and B2 have no obvious general physical meaning. (But note that B2

is automatically satisfied if ∂v � Ω � 2Tuv
�52

0 in W > R .) Condition C may alternately be expressed

as saying that the quantities � 1 � 2m
r

�
and ∂vr approach zero at proportional rates as v tends to infinity

along Cout . It also implies that m
( 1

2 r along Cout , i.e. that 2m � � r � .

These four conditions, as well as the proof of the theorem, were obtained by extrapolating por-

tions of the bootstrap argument in Section 7 of [11] for Einstein-Maxwell scalar fields. Conditions

A , , B2, and C are all satisfied for sufficiently small δ in any Einstein-Maxwell-scalar field black

hole, provided e � 2m � . (The particular choice of the upper bound for c0 in A , is analogous to

the condition in [11] that the black hole not be “extremal in the limit,” i.e. e � 2m � ; see Section

4.3.) Condition B1 also holds in all the spacetimes considered in [11], but there the proof hinges

on the Price law decay imposed on Tvv; one integrates the scalar field equation by parts and uses the

polynomial decay of Tvv in the v-direction to obtain the bound on Tuu �`� ∂ur
� 2. (In fact one obtains

something stronger than B1 this way, that Tuu �`� ∂ur
� 2 decays polynomially with v.)

Proof. Our first step is to shrink δ in order to align with the choice of ε. For this, consider the

quantity

Λ � ε  � δ  � : � P r � � δ 
r � R 3 P 1

4r2� V 1 � 2ε  c2ec1r E δ G W � c0 R � δ 
r � � 2c0 � 3M

� �
where

M : � sup� u B v �DC G � u0 B v0 � A v

v0

[
∂v � Ω � 2Tuv

� � u � ṽ � [ dṽ 4
Clearly Λ is positive for ε  and δ  sufficiently small and Λ � 1

4r2E � c0 as ε  � δ �� 0. Then since

ε � 1
4r2E � c0, there exist ε1, δ1 � 0 such that Λ � ε1 � δ1

� � ε. Without loss of generality, we may

assume that δ1
2

δ, and henceforth we restrict our attention to the (possibly) smaller region W � δ1
�
,

using W to denote it rather than W � δ � . We make use of ε1 in what follows.

Now, by Proposition 6, either W > R contains a rectangle K � u1 � v1
�

for some u1 1x� 0 � u0 " , v1 1! v0 � ∞ � , or the spacetime contains a marginally trapped tube A which is asymptotic to the event

horizon. We will show that the existence of the rectangle in the former case leads to a contradiction

and thus conclude that the latter statement is true. Furthermore, given how Proposition 6 was proved,

we will then know that in fact it is A > W which is asymptotic to the event horizon, so in particular A
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must lie in W for large v and hence must be achronal with no ingoing null segments (by Proposition

5, since condition A , holds in W ) and connected (by Lemma 1), proving the theorem.

For the remainder of the proof, we restrict our attention to the region K � u1 � v1
�
. (We may assume

without loss of generality that v1 * v , .) Define κ � � 1
4 Ω2 � ∂ur

� � 1. Then � Ω � 2∂ur � 1
4κ . Now, using

equation (3.8) and condition B1, we have

∂u log � � Ω � 2∂ur
� � � r � ∂ur

� � 1Tuu2 � c1r � ∂ur
� �

so integrating along an ingoing null ray, we have

log P κ � 0 � v �
κ � u � v � R � A u

0
∂u log � � Ω � 2∂ur

� � ũ � v � dũ2 � A u

0
c1r � ∂ur

� � ũ � v � dũ� � c1
2 � r2 � u � v � � r2 � 0 � v �/�2 � c1
2 �/� r � � δ1

� 2 � r2� �2
c1r � δ1 �

which yields

κ � u � v � * κ � 0 � v � e � c1r E δ1 4
Then since condition C implies that κ � 0 � v � * 1

4c2
for all v * v1, we have a lower bound

κ * κ0 : � 1
4c2

e � c1r E δ1 � 0

in all of K � u1 � v1
�
.

Next, since r � 0 � v ��( r � as v
(

∞, ∂vr cannot have a positive lower bound along Cout ; thus there

must exist some V * v1 such that ∂vr � 0 � V � � ε1. By continuity, there is a neighborhood of � 0 � V � in

G � u0 � v0
�

in which this inequality holds, and in particular, there exists some 0 � U
2

u1 such that

∂vr � u � V � � ε1 for all 0
2

u
2

U 4 (5.7)

Now, since Λ � ε1 � δ1
� � ε, we have

δ1

r � � 2c0 � 3M
� � ε � P r � � δ1

r � R 3 P 1
4r2� V 1 � 2ε1c2ec1r E δ1 W � c0 R �
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or equivalently, setting r0 � r � � δ1,

2δ1r2� � 2c0 � 3M
� � 2r3� ε � r3

0
2 P 1

r2� P 1 � ε1

2κ0 R � 4c0 R 4
We can thus fix constants α0 and α1 such that

2δ1r2� � 2c0 � 3M
� � 2r3� ε � α0 � r3

0
2 P 1

r2� P 1 � ε1

2κ0 R � 4c0 R (5.8)

and

α1 � α0 � 2δ1r2� � 2c0 � 3M
� � 2r3� ε � 0 4 (5.9)

As in the proof of Proposition 5, define a function α on G � u0 � v0
�
:

α � u � v � � m � 2r3 Ω � 2Tuv � u � v � 4
Using our lower bound for κ, (5.7), (5.8), and condition A , , we see that α � α0 on ! 0 � U "`# � V  :

α � m � 2r3 Ω � 2Tuv� r
2
S 1 � 4Ω � 2 ∂ur ∂vr T � 2r3 Ω � 2Tuv� r3

2 P 1
r2 P 1 � 1

2κ
∂vr R � 4Ω � 2Tuv R* r3

0
2 P 1

r2� P 1 � ε1

2κ0 R � 4c0 R� α0 4
Our goal now is to deduce that α � α1 in K � U � V � , using B2. First we compute:

∂vα � ∂v � m � 2r3 Ω � 2Tuv
�� ∂vm � ∂v � 2r3 Ω � 2Tuv
�� 2r2Ω � 2 � Tuv∂vr � Tvv∂ur
� � 2r3∂v � Ω � 2Tuv

� � 6r2 � ∂vr
�
Ω � 2Tuv� � 4r2Ω � 2Tuv∂vr � 2r2Ω � 2Tvv∂ur � 2r3∂v � Ω � 2Tuv

� 4* � 4r2Ω � 2Tuv∂vr � 2r3∂v � Ω � 2Tuv
� � (5.10)

where the last inequality follows from assumptions I and V. The next step is to integrate (5.10)

along an outgoing null ray � u  # !V � v � , but first let us consider the two summands on the right hand



46

side separately. First, A v

V
� 4r2Ω � 2Tuv∂vr � A v

V
� 4

3 � ∂vr3 � � Ω � 2Tuv
�

* A v

V
� 4

3 c0 � ∂vr3 �� � 4
3 c0 � r3� � � r � � δ1

� 3 �� � 4c0r2� δ1 4
For the second summand of (5.10), we use the following notation: given a function f , f

� �
max � f � 0  and f � � max � � f � 0  , so that f � f

� � f � . Then:A v

V
2r3∂v � Ω � 2Tuv

� � A v

V
2r3 ! ∂v � Ω � 2Tuv

� " � � 2r3 ! ∂v � Ω � 2Tuv
� " �2 A v

V
2r3� ! ∂v � Ω � 2Tuv

� " � � 2 � r � � δ1
� 3 ! ∂v � Ω � 2Tuv

� " �� A v

V
2r3� � ∂v � Ω � 2Tuv

�/�
� A v

V
2 � 3r2� δ1 � 3r � δ2

1 � δ3
1
� ! ∂v � Ω � 2Tuv

� " �2
2r3� ε � 6r2� δ1 A v

V
! ∂v � Ω � 2Tuv

� " �2
2r3� ε � 6r2� δ1 A v

V

[
∂v � Ω � 2Tuv

� [2
2r3� ε � 6r2� δ1M 4

Integrating (5.10) now yields

α � u � v � � α � u � V � � 4c0r2� δ1 � � 2r3� ε � 6r2� δ1M
�� α0 � 2r3� ε � 2r2� δ1 � 2c0 � 3M

�� α1 4
Thus we conclude that α � α1 in all of K � U � V � .

Finally, recall from equation (5.1) that

∂2
uvr � � 1

2Ω2r � 2α �
or, using the definition of κ,

∂2
uvr � 2κr � 2 � ∂ur

�
α 4
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Rearranging and applying our bounds in our region of interest, we have

∂v log � � ∂ur
� � 2κr � 2α� 2κ0r � 2� α1 �

and so integrating along an outgoing ray yields

∂ur � u � v �
∂ur � u � V � � e2κ0r � 2E α1 � v � V � �

and hence � ∂ur � u � v � � � ∂ur � u � V � e2κ0r � 2E α1 � v � V � 4 (5.11)

Assume ∂ur � u � V ��2 � b0 � 0 for all 0
2

u
2

U , let

b1 � 2κ0r � 2� α1 �
and set

b2 � b0e � b1V ;

then � ∂ur � u � v � � b2eb1v

and so integrating along an ingoing null ray, we get

r � 0 � v � � r � u � v � � b2eb1vu �
i.e.

r � u � v � � r � 0 � v � � b2eb1vu 4
But for any u � 0, the right-hand side tends to � ∞ as v

(
∞, while the left-hand side is positive.

Thus we have arrived at a contradiction, so no such rectangle K � U � V � can be contained in R , and

the statement of the theorem follows.

Corollary. Under the hypotheses of Theorem 1, the event horizon of the black hole is future geodesi-

cally complete, i.e., Cout has infinite affine length.
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Proof. Suppose s is an affine parameter for Cout ��� 0  # ! v0 � ∞ � ���?� 0 � v � s �/�  which increases to the

future. Then the vector field X � dv
ds

∂
∂v satisfies ∇X X � 0, which in this setting becomes

dv
ds < ∂v

S dv
ds
T � S dv

ds
TUS ∂v � logΩ2 � T = � 0 �

or equivalently, since dv
ds
� 0 �

∂v
S log � Ω2 dv

ds

� T � 0 4
Integrating, we have

dv
ds � a0Ω � 2

for some a0 � 0, and so now taking s as a function of the outgoing null coordinate v, we have

s � v � � a1 � a2 A v

v0

Ω2 � 0 � v � dv �
some a1 � a2 1�� , a2 � 0. Thus s has infinite range if and only if Ω �1 L2 �/! v0 � ∞ �/� .

Now, one of the hypotheses of Theorem 1 was that � � ∂ur
�
Ω � 2 2 c2 along Cout > W for some

constant c2 � 0 (condition C), and in the proof of the theorem, we found that for some U � 0, V * v0

and some b1 � b2 � 0, � ∂ur � u � v � � b2eb1v

for all 0
2

u
2

U , V
2

v (equation (5.11)). Putting these inequalities together and evaluating along

Cout , we have

b2eb1v � � ∂ur � 0 � v ��2 c2Ω2 � 0 � v �
for all V

2
v, so in fact Ω �1 L2 �/! v0 � ∞ �/� and Cout is future complete.

5.4 Immediate applications

5.4.1 Price law decay & length

Theorem 2. Suppose � G � u0 � v0
� � � Ω2 dudv

�
is a spacetime obtained as in Section 5.1.1 with radial

function r, and suppose it satisfies assumptions I-VII of Section 5.1.2. Suppose A0 is a connected

component of A along which condition A is satisfied, and suppose that in addition,

Tvv
2

c3v � 2 � ε along A0

for some c3 * 0, ε � 0. Then A0 has finite length with respect to the induced metric.
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Remark: The rate of decay of Tvv given corresponds to that of Price’s law; cf. [20, 11]. Theorem 2

applies in particular to the case of the marginally trapped tube A > W obtained in Theorem 1, but it

does not require that the tube terminate at i
�

in order to be valid. In the context of Theorem 1, this

decay rate gives a direct measure of how quickly the tube approaches the event horizon.

Proof. Since A0 is connected and achronal with no ingoing null segments, we may parameterize it

by its v coordinate, i.e. γ � v � ��� u � v � � v � 1 A0. If the domain of the v coordinate is bounded, then the

result is trivially true, so suppose v has domain !V � ∞ � for some V * v0. Then we have[
γ̇ � v � [ 2 � ~ γ̇ � v � � γ̇ � v � ��� � Ω2 � du

dv

� 4
Using the relation γ̇ � ∂vr

� � 0, we readily compute that

du
dv
� � ∂2

vvr
∂2

uvr
� � 2r3Tvv

Ω2α �
so [

γ̇ � v � [ 2 � 2r3Tvv

α
4

As in the proof of Proposition 5, we compute that α � α0 along A , so setting b3 ��� 2r3� α � 1
0 , we

have A ∞

V

[
γ̇ � v � [ dv

2 A ∞

V
b3 � Tvv � γ � v �/��� 1

2 dv
2 A ∞

V
b3c3v � 1 � ε   2dv � ∞ �

i.e., the length of A0 is finite.

5.4.2 Vaidya spacetimes

As noted in Section 4.2, perhaps the simplest example at hand when one is working with dynamical

horizons is that of the (ingoing) Vaidya spacetime, the spherically symmetric solution to Einstein’s

equations with an ingoing null fluid as source. It is widely accepted that the Vaidya marginally

trapped tube is asymptotic to the event horizon, but the literature seems to be lacking an analytical

proof of this behavior for an arbitrary mass function, so it is worth seeing how our results apply to

this case.
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Recall that the ingoing Vaidya metric is given in terms of the ingoing Eddington-Finkelstein

coordinates � v� r� θ � φ � by

g � � P 1 � 2M � v �
r R dv2 � 2dvdr � r2 � dθ2 � sin2 θdφ2 � �

with stress-energy tensor

T � Ṁ � v �
r2 dv2 �

where and M � v � is any smooth function of v. One can show directly that the marginally trapped tube

is the hypersurface at which r � 2M � v � ; it is spacelike where Ṁ � v � � 0, null where Ṁ � v � � 0, and

timelike where Ṁ � v � � 0.

By inspection T satisfies the dominant energy condition, assumption I, if and only if M � v � is

nondecreasing. We restrict our attention to a characteristic rectangle in which M is strictly positive

and indicate how the remaining assumptions II-VII are satisfied: the metric is regular everywhere

in the rectangle except at the singularity at r � 0 (albeit not in the coordinates given above), so it

follows that assumption VII is satisfied, and furthermore, that singularity is evidently spacelike,

so II is satisfied as well. The inner expansion of each round 2-sphere is (some positive multiple

of) � 2
r , i.e. it is strictly negative, so assumption V holds. Finally, assuming M � v � � M0 for some

limiting value M0 � ∞, assumptions III, IV, and VI are all satisfied as well (the strict inequality is

what yields VI).

Now, in order to check the hypotheses of Theorem 1, it seems we ought to convert from

Eddington-Finkelstein to double-null coordinates. Unfortunately, to make such a conversion an-

alytically is impossible in general; see [23]. However, we can still compute the relevant quantities

from first principles. Following the treatment given in [23], we find that in double-null coordi-

nates � u � v� θ � φ � with v scaled such that its domain is ! v0 � ∞ � , the only nonzero component of Tαβ is

Tvv. Thus conditions A , , B1, and B2 are all trivially satisfied. We can also deduce that the term� � ∂ur
�
Ω � 2 � 1

2 everywhere, so C is satisfied as well. Thus we conclude from Theorem 1 that

the marginally trapped tube is asymptotic to the event horizon. Furthermore, as one might expect,

Theorem 2 tells us that the length of the tube depends on the rate of decay of Ṁ � v � as v
(

∞. In

particular, if Ṁ � v � � O � v � 2 � ε � for some ε � 0, or more generally, if � Ṁ � v �/� 1   2 1 L1 �/!V � ∞ �/� for some

V , then the tube has finite length.
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Chapter 6

ASYMPTOTIC BEHAVIOR OF MTTS WITH A SELF-GRAVITATING HIGGS
FIELD MATTER MODEL

We now turn our attention from spacetimes with arbitrary matter to those containing a self-

gravitating Higgs field with non-zero potential. This matter model consists of a scalar function φ on

the spacetime and a potential function V � φ � such that+ φ � gαβφ;αβ � V , � φ � 4 (6.1)

The stress-energy tensor then takes the form

Tαβ � φ;αφ;β � S 1
2 φ;γφ;γ � V � φ � T gαβ 4 (6.2)

In our spherically symmetric setting, φ � φ � u � v � , so the evolution equation (6.1) becomes

V , � φ � � � 4Ω � 2 � ∂2
uvφ � ∂uφ � ∂v log r

� � ∂vφ � ∂u log r
�/�

(6.3)

and in double-null coordinates, (6.2) yields

Tuu �%� ∂uφ
� 2

Tvv �%� ∂vφ
� 2

and

Tuv � 1
2 Ω2V � φ � 4

Note that the dominant energy condition (I) is satisfied if and only if V � φ � is nonnegative. The

extension principle (VII) is known to hold for self-gravitating Higgs fields if V * � C for any finite

C [12].

We give two applications of Theorem 1 to self-gravitating Higgs field black hole spacetimes. In

Theorem 3, we assume that the scalar field and the potential both satisfy weak Price-law-like decay

conditions on the event horizon, namely that

[
∂vφ

[
and

[
V , � φ � [ 1 O � v � p

�
for some constant p � 1

2 .
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For Theorem 4, we make only certain monotonicity and smallness assumptions, including that V is

convex. In both cases, we extract the hypotheses of Theorem 1 and conclude that the respective black

holes each contain a marginally trapped tube asymptotic to the event horizon, which is additionally

achronal with no ingoing null segments, and connected for large v.

The advantage of Theorem 4 over Theorem 3 is that it does not require an explicit rate of decay.

However, the assumptions which we must make in the absence of such a decay rate are highly

nontrivial. In particular, in the case of a Klein-Gordon potential of mass m, i.e. V � φ � � 1
2 m2φ2, the

hypotheses of Theorem 4 are satisfied only if φ decays exponentially along the event horizon. In the

case of an exponential potential V � φ � � cekφ, the hypotheses cannot even be satisfied simultaneously.

By contrast, Theorem 3 can be applied in both such settings. On the other hand, for any potential

of the form V � φ � � cφk � 2, k � 0, the hypotheses of Theorem 4 may be readily satisfied; in this case

they imply that φ 1 O � v � 1
k
�

and V , � φ � 1 O � v � 1 � 1
k
�

along the event horizon but make no a priori

restriction on

[
∂vφ

[
. Indeed, it is possibly to construct an admissible φ along the event horizon in

this setting such that limsupv F ∞

[
∂vφ

[
vp � ∞ for any p � 0, which then implies that Price law decay

per se does not hold.

For both of the following theorems, we assume we have initial data r, Ω, φ for a self-gravitating

Higgs field along the null hypersurfaces Cin 
 Cout ��! 0 � u0 "_# � v0  
 � 0  # ! v0 � ∞ � with nonnegative

potential function V 1 C2 �8� � , and suppose the data satisfy assumptions III-VI, namely: r
2

r � and

0
2

m
2

m � along Cin 
 Cout , and ∂ur � 0, ∂vr � 0 along Cout .

6.1 Application of Theorem 1 assuming explicit decay rates

Theorem 3. Fix a constant p � 1
2 and a function η � v � � 0 such that η � v � decreases monotonically

to 0 as v tends to infinity. Suppose the second derivative of the potential V is bounded, i.e. there

exists a constant B such that [
V , , � x � [ 2 B

on the interval � φ0 � δ0 � φ1 � δ0
�

for some δ0 � 0, where φ0 and φ1 are the (possibly infinite) inf and

sup of φ along Cout , respectively. If along Cout the initial data satisfy

∂vr � η � v � �
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∂vφ

[ � 1
2 b1v � p �[

V , � φ � [ � 1
2 b2v � p �

c3
2 � � ∂ur

�
Ω � 2 2 1

2 c2 � (6.4)

and

liminf
v F ∞

V � φ � � 1
4r2� � (6.5)

for some positive constants b1, b2, c2, and c3, then the result of Theorem 1 holds for maximal

development of these initial data.

Remark: Note that if the constant p � 1, then ∂vφ is integrable along the event horizon, which in

turn implies that the domain of φ is compact and hence that V , , is a priori bounded on the relevant

domain. Thus the hypothesis that V , , be bounded is only necessary for 1
2 � p

2
1.

Proof. Let G � u0 � v0
�

denote the maximal development of the given initial data. By (6.5), we may

choose a positive constant c0 such that

liminf
v F ∞

V � φ � 0 � v �/� � c0 � 1
4r2E 4

Thus there exist some small 0 � ε � 2c0 and a sequence of values � vk  ( ∞ such that V � φ � 0 � vk
�/� �

c0 � 1
2 ε for all k. Choose ε , � 0 such that

ε , � min � c0 � 1
2 ε � 1

4r2E � c0  04
Since vk

(
∞, we can find K sufficiently large that for v * vK ,

b1b2

2p � 1
v1 � 2p � ε , �

2c2η � v � � r2� ε �
and

2c2r � p P log v
v R � r2� ε � 2c2η � v � 4 (6.6)

Set v1 � vK and note that by construction V � φ � 0 � v1
�/� � c0 � 1

2 ε.
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Next, set b0 � η � v1
�
, let

b3 � 2 P b2

4c3
� 2b1

r � R P 2c2r �
r2� ε � 2c2b0 R.`¡ v � p

1 � P 1 � P 2c2r � p
r2� ε � 2c2b0 R logv1

v1 R � p ¢ �
and fix b3 such that

b3 � max £ 2 ;;;; ∂uφ
∂ur

� 0 � v1
� ;;;; vp

1 � b3 ¤ 4
Now, continuity at the point � 0 � v1

�
and our initial conditions along Cout imply that there exists u1 � 0

sufficiently small that

∂vr � u � v1
� � b0 �[

∂vφ � u � v1
� [ � 1

2 b1v � p
1 �[

V , � φ � u � v1
�/� [ � 1

2 b2v � p
1 �;;;; ∂uφ

∂ur
� u � v1

� ;;;; � 1
2 b3v � p

1 �
and

V � φ � u � v1
�/� � c0 � 1

2 ε

for all u 1�! 0 � u1 " . Set C ,in �|! 0 � u1 "`# � v1  and C ,out �Q� 0  # ! v1 � ∞ � . Henceforth we will consider the

subregion of G � u0 � v0
�

given by

G � u1 � v1
�

: � K � u1 � v1
� > G � u0 � v0

� �
i.e. the maximal development of the induced initial data on C ,in 
 C ,out .

Finally, we choose

0 � δ � min ¥ r �
2 � b1

2 P b2

4c3
� 2b0b3 � 2b1

r � R � 1 � b2

2Bb3
� δ0vp

1
b3

� v2p
1

2b2
3r �§¦ �

and as usual, define

W �'�?� u � v � 1 G � u1 � v1
� [

r � u � v � * r � � δ  04
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Define a region V as the set of points � u � v � 1 G � u1 � v1
�

such that the following seven inequalities

hold for all � ũ � ṽ � 1 J � � u � v � > G � u1 � v1
�
:

∂vr � b0 (6.7)[
∂vφ

[ � b1v � p (6.8)[
V , � φ � [ � b2v � p (6.9);;;; ∂uφ

∂ur
;;;; � b3v � p (6.10)� � ∂ur

�
Ω � 2 � c2 (6.11)

V � φ � � 2c0 � ε (6.12)

∂vr � 0 4 (6.13)

Note that (6.13) implies that V � R , so W > V � W > R . Since we can easily extract the hy-

potheses of Theorem 1 from these inequalities, our goal is to prove that in fact W > R � V . We

accomplish this by means of a bootstrap argument showing that W > R � W > V . Before proceed-

ing, however, let us show that the hypotheses of Theorem 1 are satisfied.

First we check that conditions A, -C hold in V . Note that V is a past set by definition, and our

choices of u1 and v1 imply that C ,in � V . Thus for � u � v � 1 V , we haveA v

v1

[
∂vV � φ � u � ṽ � [ dṽ

2
b1b2 A v

v1

ṽ � 2p dṽ � b1b2

2p � 1
v1 � 2p

1 � ε , 4 (6.14)

Since ε , � 1
4r2E � c0, (6.14) implies that B2 is satisfied, and since ε , � c0 � 1

2 ε, it also implies that

1
2V � φ � u � v �/� � 1

2V � φ � u � v1
�/� � 1

2 ε , � c0 � 1
2 ε � c0 � 1

4r2E �
so A , is satisfied as well. Condition B1 follows immediately from (6.10), and C follows from the

hypothesis (6.4).

We must also verify that assumptions I-VII hold in G � u1 � v1
�
. The requirement that V be non-

negative implies I, while II follows by construction, since G � u1 � v1
�

is the maximal development of

initial data on C ,in 
 C ,out . Assumptions III and IV hold on C ,in 
 C ,out by monotonicities of r and m in

R , respectively, while V and VI were among the hypotheses of the theorem. Finally, assumption

VII holds by [12] since V is nonnegative.

We now turn to the bootstrap argument, which we carry out as follows: we first retrieve (strict)

inequalities (6.10) and (6.12) in V , where the set closure is taken with respect to G � u1 � v1
�
, i.e.
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V � V > G � u1 � v1
�
. Since inequalities (6.7)-(6.9), (6.11) and (6.13) hold along C ,out by hypothesis, a

continuity argument then implies that C ,out � V , i.e. that both (6.10) and (6.12) hold along all of C ,out .

Thus W > V u� /0, since W must contain a neighborhood of i
� ��� 0 � ∞ � . We then retrieve inequalities

(6.7)-(6.9) and (6.11) in W > V and conclude, again by continuity, that in fact W > V � W > R .

It is again convenient to make use of the quantity κ introduced in the proof of Theorem 1,

κ � � 1
4Ω2 � ∂ur

� � 1 � ∂vr
1 � 2m

r

4 (6.15)

Equation (3.8) implies that ∂uκ
2

0, and combining this fact with (6.4), we have κ
2 1

4c3
in all of

G � u1 � v1
�
. The bootstrap inequality (6.11) implies that κ * 1

4c2
in all of V as well, so by (6.7),S 1 � 2m

r
T � u � v � ��� ∂vr

�
κ � 1 � u � v �O2 4c2b0 (6.16)

in V . Also, note that combining equations (3.8) and (3.10) (or alternately (3.9) and (3.11)) yields

∂2
uvr � 1

4 Ω2r � 1 S 2r2V � φ � �¨� 1 � 2m
r

� � 1 T 4 (6.17)

Let us now retrieve inequality (6.10) in V . First we observe that (6.3) may be rearranged as

∂2
uvφ � � 1

4 Ω2V ,©� φ � � � ∂uφ
� � ∂v log r

� � � ∂vφ
� � ∂u log r

� 4 (6.18)

Set r1 � r � 0 � v1
�

and note that ∂vr � 0 implies that r * r1 on all of Cout . We compute:

∂v P ∂uφ
∂ur R � ∂2

uvφ
∂ur � P ∂uφ

∂ur R P ∂2
uvr

∂ur R� S � 1
4 Ω2V ,8� φ � � � ∂uφ

� � ∂v log r
� � � ∂vφ

� � ∂u log r
� T � ∂ur

� � 1�QP ∂uφ
∂ur R S 1

4 Ω2r � 1 < 2r2V � φ � � � 1 � 2m
r

� � 1 = T � ∂ur
� � 1

� κV , � φ � � P ∂uφ
∂ur R � ∂v log r

� � ∂vφ
r� P ∂uφ

∂ur R κr � 1 < 1 � 2r2V � φ � � � 1 � 2m
r

� =� κV , � φ � � ∂vφ
r� P ∂uφ

∂ur R S κr � 1 < 1 � 2r2V � φ � � � 1 � 2m
r

� = �}� ∂v log r
� T 4

Let

A : � κr � 1 < 1 � 2r2V � φ � � � 1 � 2m
r

� = �}� ∂v log r
� �
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so that we may write

∂v P ∂uφ
∂ur R � � A P ∂uφ

∂ur R � P κV , � φ � � ∂vφ
r R 4 (6.19)

Using (6.12), (6.16) and the fact that c0 � 1
4r2E , we estimate

A * 1 � 2r2� � 2c0 � ε
� � 4c2b0

4c2r1

� r2� ε � 2c2b0

2c2r1
� : a0 4

The constant a0 is positive by our choice of b0. Also, (6.8) and (6.9) imply that;;;; κV , � φ � � ∂vφ
r
;;;; 2 P b2

4c3
� b1r � 1

1 R v � p � : a1v � p

Then for � u � v � 1 V , integrating (6.19) along the outgoing null ray � u  # ! v1 � v " yields

P ∂uφ
∂ur R � u � v � � e �«ª v

v1
A � u B v̄ � dv̄ P ∂uφ

∂ur R � u � v1
�

(6.20)� A v

v1

e �«ª v
ṽ A � u B v̄ � dv̄ P κV , � φ � � ∂vφ

r R � u � ṽ � dṽ �
so ;;;; ∂uφ

∂ur
;;;; � u � v �¬2

e �	ª v
v1

A � u B v̄ � dv̄ ;;;; ∂uφ
∂ur

;;;; � u � v1
�

� A v

v1

e �«ª v
ṽ A � u B v̄ � dv̄ ;;;; κV , � φ � � ∂vφ

r
;;;; � u � ṽ � dṽ2 1

2 b3v � p
1 e �«ª v

v1
a0 dv̄ � A v

v1

a1ṽ � pe �«ª v
ṽ a0 dv̄ dṽ2 1

2 b3v � p
1 ea0 � v1 � v � � a1e � a0v A v

v1

ṽ � pea0 ṽ dṽ 4
Integrating the second term by parts, we have:

a1e � a0v A v

v1

ṽ � pea0 ṽ dṽ � a1e � a0v P a � 1
0 v � pea0v � a � 1

0 v � p
1 ea0v1� A v

v1

a � 1
0 pṽ � p � 1ea0 ṽ dṽ R2

a1a � 1
0 v � p � pa1a � 1

0 e � a0v A v

v1

ṽ � p � 1ea0 ṽ dṽ 4
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Furthermore, we estimate that

A v

v1

ṽ � p � 1ea0ṽ dṽ � A v

v � p
a0

logv
ṽ � p � 1ea0 ṽ dṽ � A v � p

a0
log v

v1

ṽ � p � 1ea0 ṽ dṽ2
ea0v A v

v � p
a0

logv
ṽ � p � 1 dṽ �� ea0v � p log v A v � p

a0
logv

v1

ṽ � p � 1 dṽ� ea0v ¡ � v � p

p
� � v � p

a0
logv

� � p

p

¢ �
� ea0vv � p ¡ � � v � p

a0
logv

� � p

p
� v1 � p

p

¢2
p � 1ea0vv � p  V � 1 �}� 1 � p

a0
v � 1 log v

� � p W � v1 � p ® 4
Putting it all back together yields;;;; ∂uφ

∂ur
;;;; � u � v �¬2 1

2 b3v � p
1 ea0 � v1 � v � � a1a � 1

0 v � p �}� pa1a � 1
0 e � a0v � .. V p � 1ea0vv � p  V � 1 �}� 1 � p

a0
v � 1 log v

� � p W � v1 � p ® W2 1
2 b3v � p

1 ea0 � v1 � v � � a1a � 1
0 v � p V � 1 � p

a0
v � 1 logv

� � p � v1 � p W� S 1
2 b3vpv1 � pea0 � v1 � v � � 1

2 b3
T v � p� b3v � p �

where in the second to last line we have used the monotonicity of v � 1 logv together with the defini-

tion of b3 and the fact that r1 � r � , and in the last line we have used the fact that vpe � a0v decreases

monotonically for v � pa � 1
0 , a lower bound which is guaranteed by (6.6) and our choice of v1 (as-

suming without loss of generality that v1 * e). Thus we have retrieved (6.10) in V .

For (6.12), we compute as in (6.14) that for � u � v � 1 V ,

V � φ � u � v �/�O2 V � φ � u � v1
�/� � A v

v1

[
∂v � V � φ �/� � u � ṽ � [ dṽ � c0 � 1

2 ε � ε , � 2c0 � ε �
where the last inequality follows from our choice of ε , . Thus we have retrieved (6.12) in V .

As discussed above, we can now conclude that C ,out � V and hence that W > V u� /0. We now

turn to improving inequalities (6.7)-(6.9) and (6.11) in W > V .
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For (6.7), note that equation (6.17) and inequalities (6.12) and (6.7) imply that

∂2
uvr

2 1
4 Ω2r � 1 S 2r2� � 2c0 � ε

� � 4c2b0 � 1 T2 1
4 Ω2r � 1 S 4c2b0 � 2r2� ε T2
0

in V . Since ∂vr � 0 � v � � η � v ��2 η � v1
� � b0 for all v * v1, this yields (6.7).

Next we turn to (6.8). Rearranging (6.18), we have

∂2
uvφ � � ∂ur

� P κV , � φ � � ∂uφ
∂ur

� ∂v log r
� � ∂vφ

r R �
so for � u � v � 1 W > V , using inequalities (6.7)-(6.10) and the fact that r * r � � δ implies[

∂2
uvφ � u � v � [ 2 � � ∂ur � u � v �/� P b2

4c3
� b0b3 � b1

r � � δ R v � p 4
Thus [

∂vφ � u � v � [ 2 [
∂vφ � 0 � v � [ � A u

0

[
∂2

uvφ � ũ � v � [ dũ2 [
∂vφ � 0 � v � [ � P b2

4c3
� b0b3 � b1

r � � δ R v � p A u

0
∂ur � ũ � v � dũ

� 1
2 b1v � p � δ P b2

4c3
� 2b0b3 � 2b1

r � R v � p� b1v � p �
where in the second-to-last and last lines we have used our choice of δ. Thus we have obtained (6.8)

in W > V .

Next we retrieve (6.9). First observe that for � u � v � 1 W > V ,;;;; A u

0
� ∂uφ

� � ũ � v � dũ
;;;; 2 � b3v � p A u

0
∂ur � ũ � v � dũ

2
b3v � p

1 δ � δ0 �
where we have used (6.10) and our choice of δ. Thus φ � u � v � 1¯� φ0 � δ0 � φ1 � δ0

�
, so in particular,[

V , , � φ � u � v �/� [ 2 B for all � u � v � 1 W > V . Using (6.10) once more, we have:[
V , � φ � u � v �/� [ 2 [

V , � φ � 0 � v �/� [ � A u

0

[
V , , � φ � [°[ ∂uφ

[ � ũ � v � dũ2 1
2 b2v � p � Bb3v � p A u

0
∂ur � ũ � v � dũ2 1

2 b2v � p � Bb3δv � p� b2v � p �
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where in the last line we have again used our choice of δ.

It remains only to retrieve (6.11). Note that from (3.8) we have

∂u � � Ω � 2∂ur
� � rΩ � 2 � ∂uφ

� 2 �
and combining (6.11) and (6.10) yields

Ω � 2 � ∂uφ
� 2 2 b2

3v � 2p Ω � 2 � ∂ur
� 2 � � b2

3c2v � 2p � ∂ur
� 4

Integrating along an ingoing null ray and using (6.4), we have� � Ω � 2∂ur
� � u � v �±2 � � Ω � 2∂ur

� � 0 � v � � A u

0
b2

3c2v � 2pr � ∂ur
�
dũ2 1

2 c2 � b2
3c2v � 2pr � δ� c2 �

once more using the choice of δ.

Thus inequalities (6.7)-(6.12) hold in all of W > V , which implies that the boundary of W > V

relative to W > R is empty. Thus W > V � W > R , so in particular, W > R � V and the theorem

follows.

6.2 Application of Theorem 1 assuming smallness and monotonicity

Theorem 4. Suppose there exist positive constants c0, c1, c2, c3, and c4 such that

c0 � 1
4r2� ; (6.21)

along Cin P ∂uφ
∂ur R 2 � c1; (6.22)

and along Cout

c3
2 � � ∂ur

�
Ω � 2 2 1

2 c2 (6.23)

and

V , � φ � � c4

[
∂vφ

[ 4 (6.24)
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Suppose also that the potential V satisfies

0
2

V , , � x �52 B (6.25)

on the interval � φ0 � δ0 � φ1
�

for some δ0 � 0, where φ0 and φ1 are the (possibly infinite) inf and sup

of φ along Cout , respectively, and B is a constant satisfying B � r � 2� .

If along Cout the initial data satisfy

∂vr � ε

V � φ � � 1
2 ε ,[

∂vφ

[ � 1
2 ε , ,

for sufficiently small ε, ε , , and ε , , � 0, as well as

∂vφ � 0

∂uφ � 0

V , � φ � � 4 ² c1c2 � ∂v log r
� � 4c3r � 1� � ∂vφ

� � 0 �
and either

V , � φ ��2 0

or [
φ0

[ � ∞ �
then the result of Theorem 1 holds for maximal development of these initial data.

Remarks: Stated more precisely, the requirement that the constants ε, ε , , and ε , , be sufficiently small

is the following:

2ε , � 8c2r � 2� ε � r � 2� � B �
ε , � min £ 1

2r2� � 2c0 � 2c0 ¤ �
and

ε , , � ² c1c3 � 1 � 2r2� ε , � 4c2ε
�

c2 � c4r � � 4c3
� 4

The existence of constants c0 and c1 satisfying (6.21) and (6.22) is not restrictive, but that of

constants c2 and c3 in (6.23) is. Inequalities (6.26) and (6.27) together imply that the scalar field φ

has a timelike gradient. Note that if V ,©� φ ��2 0 along Cout , then (6.24) is trivially true for any c4.
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Proof. Consider the maximal development G � u0 � v0
�

of the given initial data, and define a region V0

as the set of all � u � v � 1 G � u0 � v0
�

such that the following ten inequalities hold for all � ũ � ṽ � 1 J � � u � v � :
∂vφ � 0 (6.26)

∂uφ � 0 (6.27)

V , � φ � � c4

[
∂vφ

[
(6.28)

V , � φ � � 4 ² c1c2 � ∂v log r
� � 4c3r � 1� � ∂vφ

� � 0 � (6.29)

∂vr � ε (6.30)

V � φ � � ε , (6.31)[
∂vφ

[ � ε , , (6.32)[
∂uφ

[ � ² c1

[
∂ur

[
(6.33)� � ∂ur

�
Ω � 2 � c2 (6.34)

∂vr � 0 4 (6.35)

Clearly V0 is open in G � u0 � v0
�
. Consequently, our assumptions on the initial data imply that V0

must contain some neighborhood of � 0 � v0
�

in G � u0 � v0
�
, so by shrinking u0 as necessary, we may

in fact assume that they all hold along Cin. Since all of the inequalities except (6.33) are known to

hold on Cout , our first step will be to retrieve (6.33) in V0, where the set closure is taken relative

to G � u0 � v0
�
, i.e. V0 � V0 > G � u0 � v0

�
. Then by a continuity argument, we can conclude that Cin 


Cout � V0.

As in the proof of Theorem 3, recall that quantity κ is given by

κ � � 1
4Ω2 � ∂ur

� � 1 � � ∂vr
�

1 � 2m
r

4
From (6.34), we have κ * 1

4c2
in V0, and since ∂uκ

2
0 by equation (3.8), (6.23) implies κ

2 1
4c3

in

all of G � u0 � v0
�
. Also, from (6.30) we have that

� 1 � 2m
r

� �|� ∂vr
�
κ � 1 2 4c2ε (6.36)

in V0. Let r0 � r � 0 � v0
�

and observe that ∂vr � 0 implies that r * r0 on all of Cout .
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Now, equation (6.20) may be derived exactly as in the proof of Theorem 3, namelyP ∂uφ
∂ur R � u � v � � e �«ª v

v0
A � u B ṽ � dṽ P ∂uφ

∂ur R � u � v0
�

� A v

v0

e �«ª v
v � A � u B ṽ � dṽ P κV , � φ � � ∂vφ

r R � u � v , � dv , �
where

A : � κr � 1 < � 1 � 2r2V � φ �/� � � 1 � 2m
r

� = �¨� ∂v log r
� 4

Using the above bounds, (6.31), and (6.35), in V0 we estimate

A * 1 � 2r2� ε , � 4c2ε
4c2r0

� : a0 4
The constant a0 is positive by our choices of ε and ε , . Also, (6.32) and (6.28) imply that

κV , � φ � � ∂vφ
r
2 P c4

4c3
� 1

r0 R ε , , � : a1 4
Then applying these bounds and using (6.22), for � u � v � 1 V0 we haveP ∂uφ

∂ur R � u � v � � ² c1 e � a0 � v � v0 � � a1 A v

v0

e � a0 � v � v � � dv ,� ² c1 e � a0 � v � v0 � � a1a � 1
0 V 1 � e � a0 � v � v0 � W� e � a0 � v � v0 � S ² c1 � a1a � 1

0
T � a1a � 1

0 4
Our choices of ε, ε , and ε , , imply that ² c1 � a1a � 1

0
� 0, so for v * v0, we haveP ∂uφ

∂ur R � u � v � � S ² c1 � a1a � 1
0
T � a1a � 1

0 � ² c1 4
Thus (6.33) holds in all of V0, so in particular, Cout � V0.

Our next step is to choose a suitably small δ � 0 to use in defining W : we let

δ � min £ δ0² c1
� ε , r �

8 ² c1c3ε , , � r � P 1 � 2 ��³ c4r E4c3

� 1 ´ � 1 R � 1
2c1r � ¤

and set W � W � δ � �Q�?� u � v � 1 G � u0 � v0
� [

r � u � v � * r � � δ  . Now, r � r � along Cout , so there must

exist some v1 * v0 such that W contains an open neighborhood of the ray � 0  # ! v1 � ∞ � . Also, since

V0 and W each contain some neighborhood of the point � 0 � v1
�
, we can find 0 � u1

2
u0 such that! 0 � u1 "�# � v1  �� V0 > W . Set C ,in ��! 0 � u1 "�# � v1  and C ,out �%� 0  # ! v1 � ∞ � . Henceforth we restrict
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our attention to the subset G � u1 � v1
� � K � u1 � v1

� > G � u0 � v0
�
, that is, the maximal development of

the induced data on C ,in 
 C ,out .

The proof now proceeds by a bootstrap argument. Let V be the set of all points � u � v � 1 G � u1 � v1
�

such that � ũ � ṽ � 1 V0 > W for all � ũ � ṽ � 1 J � � u � v � > G � u1 � v1
�
. Clearly V � W > R . By construction,

we have C ,in 
 C ,out � V . We will retrieve inequalities (6.26)-(6.34) in V and consequently conclude

that V � W > R > G � u1 � v1
�
. At that point we can easily extract the hypotheses of Theorem 1.

We proceed through the ten inequalities in order, beginning with (6.26) and (6.27). Rearranging

equation (6.3) and applying (6.33) and our bounds for κ yields

∂2
uvφ � � 1

4Ω2 P V , � φ � � ∂uφ
∂ur

� ∂v log r
�
κ � 1 � ∂vφ

rκ R2 � 1
4Ω2 S V , � φ � � 4 ² c1c2 � ∂v log r

� � 4c3r � 1� � ∂vφ
� T �

so (6.29) now implies that

∂2
uvφ

2
0 (6.37)

in V . Thus since (6.26) and (6.27) hold along C ,out and C ,in, respectively, they must hold in V as

well.

Now we turn to (6.28) and compute that

∂u P V , � φ �
∂vφ R � V , , � φ � � ∂uφ

� � ∂vφ
� � V , � φ � � ∂2

uvφ
�� ∂vφ

�
2 * � V , � φ � � ∂2

uvφ
�� ∂vφ

�
2 4

Suppose � u � v � 1 V . If V ,-� φ � u � v �/�m2 0, then clearly (6.28) holds at � u � v � , since

[
∂vφ

[ � 0. If

V ,-� φ � u � v �/� � 0, let u  be the smallest value such that V ,©� φ � * 0 along ! u  � u � # � v  and integrate the

above inequality, noting that the righthand side is positive along this ray by (6.37). If u  � 0, then

by our hypotheses on Cout , we have V , � φ � u  � v �/� � ∂vφ � u  � v �/� � 1 � � c4. On the other hand, if u  � 0,

then by choice of u  , V , � φ � u  � v �/� � ∂vφ � u  � v �/� � 1 � 0. Thus in either case we haveP V ,-� φ �
∂vφ R � u � v � * P V ,8� φ �

∂vφ R � u  � v � � � c4 �
thereby obtaining (6.28) in V .

Next, before proceeding to (6.29), let us first show that our initial bounds for V , ,-� φ � continue to

hold in V . On one hand, integrating (6.33) yields

φ � 0 � v � � φ � u � v �O2 ² c1 � r � 0 � v � � r � u � v �/� � ² c1δ � δ0 4
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On the other hand, (6.27) implies

φ � u � v �U2 φ � 0 � v � 4
Thus for � u � v � 1 V we have φ � u � v � 17� φ0 � δ0 � φ1

�
, and hence

0
2

V , , � φ � u � v �/�52 B 4
For (6.29), we first derive an upper estimate for ∂2

uvr in V . Recalling equation (6.17), we have

∂2
uvr � 1

4 Ω2r � 1 < 2r2V � φ � �}� 1 � 2m
r

� � 1 =2 � κ � ∂ur
�
r � 1 < 2r2� ε , � 4c2ε � 1 =2 ∂ur

4c2r � < 1 � 2r2� ε , � 4c2ε = �
where we have used (6.31), (6.36), and κ * 1

4c2
. Setting

a2 : � 1
4c2r � < 1 � 2r2� ε , � 4c2ε = � 0 �

we thus have

∂2
uvr
2

a2 � ∂ur
� 4 (6.38)

Consequently, differentiating the lefthand side of (6.29) and using inequalities (6.33), (6.27), (6.37),

(6.30), and (6.38) yields

∂u
S V , � φ � � 4 ² c1c2 � ∂v log r

� � 4c3r � 1� � ∂vφ
� T� V , , � φ � � ∂uφ

� � 4 ² c1c2 � ∂2
uv log r

� � 4c3r � 1� � ∂2
uvφ
�* ² c1B � ∂ur

� � 4 ² c1c2r � 1∂2
uvr � 4 ² c1c2r � 2 � ∂ur

� � ∂vr
�* ² c1B � ∂ur

� � 4 ² c1c2a2r � 1� � ∂ur
� � 4 ² c1c2r � 2� ε � ∂ur

�� ² c1 � ∂ur
� S B � 4c2a2r � 1� � 4c2r � 2� ε T� ² c1 � ∂ur
� S B � r � 2� � 2ε , � 8c2r � 2� ε T� 0 �

where the last line follows from the choices of ε and ε , . Thus we have retrieved (6.29) in V .

That inequality (6.30) holds follows immediately from (6.38), since the latter implies that ∂2
uvr �

0.
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For (6.31), observe that from (6.29), we have

V , � φ � * 4 ² c1c2 � ∂v log r
� � 4c3r � 1� � ∂vφ

� * 4c3r � 1� � ∂vφ
� 4

Multiplying through by ∂uφ and using (6.27), (6.33), and (6.32) yields

∂u � V � φ �/�µ2
4c3r � 1� [ ∂vφ

[°[
∂uφ

[
2 � 4 ² c1c3r � 1� ε , , � ∂ur

� 4
Integrating and using the assumption that V � φ � � 1

2 ε , on Cout then gives

V � φ � � u � v �¬2 1
2 ε , � 4 ² c1c3r � 1� ε , , δ� ε ,

by our choice of δ.

Next we turn to (6.32). Using equation (6.3) and inequalities (6.26)-(6.28), we have

∂u log

[
∂vφ

[ � � ∂2
uvφ
� � ∂vφ

� � 1� � 1
4 Ω2V ,©� φ � � ∂vφ

� � 1 � � ∂uφ
� � ∂vφ

� � 1 � ∂v log r
� � � ∂u log r

�2 � c4κ � ∂ur
� � ∂u log r2 � ∂u log r P c4r �

4c3
� 1 R �

so integrating yields [
∂vφ � u � v � [ 2 [

∂vφ � 0 � v � [ P r �
r � � δ R c4r E4c3

� 1

� 1
2 ε , , P r �

r � � δ R c4r E4c3

� 1

� ε , , �
where in the last line we have again used our choice of δ. Thus (6.32) holds in V .

We have already shown that (6.33) holds in V0, so naturally it holds in V as well.

Lastly we retrieve (6.34). Note that from (3.8) we have

∂u � � Ω � 2∂ur
� � rΩ � 2 � ∂uφ

� 2 �
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and combining (6.34) and (6.33) yields

Ω � 2 � ∂uφ
� 2 2 c1Ω � 2 � ∂ur

� 2 � � c1c2 � ∂ur
� 4

Integrating along an ingoing null ray and using (6.34) again, we have

� � Ω � 2∂ur
� � u � v �¬2 � � Ω � 2∂ur

� � 0 � v � ��A u

0
c1c2r � ∂ur

�
dũ2 1

2 c2 � c1c2r � δ� c2 �
once more using our choice of δ in the last line.

The bootstrap is now completed; we have shown that inequalities (6.26)-(6.34) hold in all of

W > R , and hence that W > R � V . It remains to show that the hypotheses of Theorem 1 hold in

this region.

For A , , we note that by (6.31), Ω � 2Tuv � 1
2V � φ � � 1

2 ε , � c0 � 1
4 � r � � � 2. Conditions B1 and C

are immediate by (6.33) and (6.34), respectively. For the second part of condition B2, we use (6.31)

and the nonnegativity of V � φ � to estimate that

A v

v0

∂v � Ω � 2Tuv
�
dṽ � A v

v0

∂v � 12V � φ �/� dṽ � 1
2 !V � φ � u � v �/� � V � φ � u � v0

�/� " � 1
2 ε ,

and then observe that 1
2 ε , � 1

4r2E � c0. For the first part of B2, recall that one of our hypotheses was

that either V ,©� φ �52 0 along Cout or

[
φ0

[ � ∞. In the former case, we may differentiate V ,8� φ � and use

(6.27) and the nonnegativity of V , , to obtain

∂u � V , � φ �/� � V , , � φ � � ∂uφ
��2

0 4
Thus V ,-� φ �)2 0 in all of V , so combining this with inequality (6.26), we have that

[
∂v � 12V � φ � [ �

∂v � 12V � φ �/� , and the first part of B2 now follows from the second. In the latter case, we have φ0 � δ0 �
φ � u � v � � φ1 for all � u � v � 1 V , where we are now assuming that

[
φ0

[ � ∞. Since φ decreases along
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Cout ,

[
φ1

[ � ∞ as well. Thus, using (6.28), (6.26), and (6.32), we haveA v

v0

[
∂v � 12V � φ �/� [ dṽ � A v

v0

1
2

[
V ,-� φ � [°[ ∂vφ

[
dṽ� �¶A v

v0

1
2 c4ε , , � ∂vφ

�
dṽ� 1

2 c4ε , ,©� φ � u � v0
� � φ � u � v �/�� 1

2 c4ε , ,©� φ1 � φ0 � δ0
�

� ∞ 4
Thus condition B2 holds in either case. The verification of assumptions I-VII is identical to that in

the proof of Theorem 3.
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Appendix A

CHRISTOFFEL SYMBOLS FOR A SPHERICALLY SYMMETRIC METRIC

Here we explicitly compute the Christoffel symbols for the metric

g � � Ω2dudv � r2gS2 4
Recall that the functions r and Ω depend only on the coordinates u and v. Assign the coordinates

u � v� θ � φ labels 1, 2, 3, 4 respectively. Then we have

g12 � g21 � � 1
2 Ω2 and g12 � g21 � � 2Ω � 2

g33 � r2 g33 � r � 2

g44 � r2 sin2θ � g44 � r � 2 � sinθ
� � 2 � all others 0.

In order to compute this metric’s Christoffel symbols, we first write down all of the partial

derivatives of its components that are non-zero. These are:

g12 B 1 � g21 B 1 � � Ω � ∂uΩ
�

g44 B 1 � 2r � ∂ur
�
sin2θ

g12 B 2 � g21 B 2 � � Ω � ∂vΩ
�

g44 B 2 � 2r � ∂vr
�
sin2θ

g33 B 1 � 2r � ∂ur
�

g44 B 3 � 2r2 sin θcosθ

g33 B 2 � 2r � ∂vr
� 4

Now, we have the coordinate formula for the Christoffel symbols

Γk
i j � 1

2 gkl � gil B j � g jl B i � gi j B l � 4
So we can compute:

Γ1
i j � 1

2 g1l � gil B j � g jl B i � gi j B l �� 1
2 g12 � gi2 B j � g j2 B i � gi j B 2 �� � Ω � 2 � gi2 B j � g j2 B i � gi j B 2 � ;
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thus

Γ1
11 � � Ω � 2 � g12 B 1 � g12 B 1 � g11 B 2 � � � Ω � 2 � 2g12 B 1 � � 2Ω � 1 � ∂uΩ

� �
Γ1

12 � Γ1
21 � � Ω � 2 � g12 B 2 � g22 B 1 � g12 B 2 � � 0 �

Γ1
33 � � Ω � 2 � g32 B 3 � g32 B 3 � g33 B 2 � � Ω � 2g33 B 2 � 2Ω � 2r � ∂vr

�
Γ1

44 � � Ω � 2 � g42 B 4 � g42 B 4 � g44 B 2 � � Ω � 2g44 B 2 � 2Ω � 2r � ∂vr
�
sin2θ 4

An identical procedure gives us the Christoffel symbols of the form Γ2
i j, and we have

Γ2
12 � Γ2

21 � � Ω � 2 � g11 B 2 � g21 B 1 � g12 B 1 � � 0

Γ2
22 � � Ω � 2 � g21 B 2 � g21 B 2 � g22 B 1 � � � Ω � 2 � 2g21 B 2 � � 2Ω � 1 � ∂vΩ

�
Γ2

33 � � Ω � 2 � g31 B 3 � g31 B 3 � g33 B 1 � � Ω � 2g33 B 1 � 2Ω � 2r � ∂ur
�

Γ2
44 � � Ω � 2 � g41 B 4 � g41 B 4 � g44 B 1 � � Ω � 2g44 B 1 � 2Ω � 2r � ∂ur

�
sin2θ 4

And

Γ3
i j � 1

2 g3l � gil B j � g jl B i � gi j B l �� 1
2 g33 � gi3 B j � g j3 B i � gi j B 3 �� 1
2 r � 2 � gi3 B j � g j3 B i � gi j B 3 � ;

thus

Γ3
13 � Γ3

31 � 1
2 r � 2 � g13 B 3 � g33 B 1 � g13 B 3 � � 1

2 r � 2 g33 B 1 � 1
2 r � 2 � 2r � ∂ur

�/� � r � 1 � ∂ur
�

Γ3
23 � Γ3

32 � 1
2 r � 2 � g23 B 3 � g33 B 2 � g23 B 3 � � 1

2 r � 2 g33 B 2 � 1
2 r � 2 � 2r � ∂vr

�/� � r � 1 � ∂vr
�

Γ3
44 � 1

2 r � 2 � g43 B 4 � g43 B 4 � g44 B 3 � � � 1
2 r � 2 g44 B 3 � � sinθcos θ 4

Likewise,

Γ4
i j � 1

2 r � 2 � sinθ
� � 2 � gi4 B j � g j4 B i � gi j B 4 � �

so

Γ4
14 � Γ4

41 � 1
2 r � 2 � sinθ

� � 2 � g14 B 4 � g44 B 1 � g14 B 4 � � 1
2 r � 2 � sinθ

� � 2g44 B 1 � r � 1 � ∂ur
�

Γ4
24 � Γ4

42 � 1
2 r � 2 � sinθ

� � 2 � g24 B 4 � g44 B 2 � g24 B 4 � � 1
2 r � 2 � sinθ

� � 2g44 B 2 � r � 1 � ∂vr
�

Γ4
34 � Γ4

43 � 1
2 r � 2 � sinθ

� � 2 � g34 B 4 � g44 B 3 � g34 B 4 � � 1
2 r � 2 � sinθ

� � 2g44 B 3 � cotθ 4
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To summarize: all Christoffel symbols are zero except

Γ1
11 � 2 � ∂uΩ

�
Ω � 1 Γ2

22 � 2 � ∂vΩ
�
Ω � 1

Γ1
33 � 2r � ∂vr

�
Ω � 2 Γ2

33 � 2r � ∂ur
�
Ω � 2

Γ1
44 � 2r � ∂vr

�
sin2θΩ � 2 Γ2

44 � 2r � ∂ur
�
sin2θΩ � 2

Γ3
13 � Γ3

31 � � ∂ur
�
r � 1 Γ4

14 � Γ4
41 � � ∂ur

�
r � 1

Γ3
23 � Γ3

32 � � ∂vr
�
r � 1 Γ4

24 � Γ4
42 � � ∂vr

�
r � 1

Γ3
44 � � sinθcosθ Γ4

34 � Γ4
43 � cotθ 4
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Appendix B

DERIVING THE EINSTEIN FIELD EQUATIONS

In order to write down the field equations, we must first find the Ricci and scalar curvatures for

the metric g � Ω2dudv � r2gS2 . Now, the components of the curvature tensor are

Ri jkl � gml � Γm
jk B i � Γm

ik B j � � gpl � Γm
jkΓp

im � Γm
ikΓp

jm
� �

and so the Ricci tensor is given by

R jk � Γi
jk B i � Γi

ik B j � Γm
jkΓi

im � Γm
ikΓi

jm 4
Thus, using our coordinates � u � v� θ � φ � (labeled 1, 2, 3, and 4 respectively) and using the results of

Appendix A, we have

R11 � Γi
11 B i � Γi

i1 B 1 � Γm
11Γi

im � Γm
i1Γi

1m� Γ1
11 B 1 � � Γ1

11 B 1 � Γ3
31 B 1 � Γ4

41 B 1 � � Γ1
11 � Γ1

11 � Γ3
31 � Γ4

41
�� � Γ1

11Γ1
11 � Γ3

31Γ3
13 � Γ4

41Γ4
14
�� � � Γ3

31 B 1 � Γ4
41 B 1 � � Γ1

11 � Γ3
31 � Γ4

41
� � � Γ3

31Γ3
13 � Γ4

41Γ4
14
�� � 2∂u

S � ∂ur
�
r � 1 T � 2 � ∂uΩ

�
Ω � 1 � 2 � ∂ur

�
r � 1 � � 2 S � ∂ur

�
r � 1 T 2� � 2 � ∂2

uur
�
r � 1 � 2 � ∂ur

� 2r � 2 � 2 � ∂uΩ
�
Ω � 1 S 2 � ∂ur

�
r � 1 T � 2 S � ∂ur

�
r � 1 T 2� � 2 � ∂2

uur
�
r � 1 � 4 � ∂uΩ

� � ∂ur
� � Ωr

� � 1;

R12 � R21 � Γi
12 B i � Γi

i2 B 1 � Γm
12Γi

im � Γm
i2Γi

1m� � � Γ2
22 B 1 � Γ3

32 B 1 � Γ4
42 B 1 � � � Γ3

32Γ3
13 � Γ4

42Γ4
14
�� � ∂u

S 2 � ∂vΩ
�
Ω � 1 � 2 � ∂vr

�
r � 1 T � 2 S � ∂vr

�
r � 1 TUS � ∂ur

�
r � 1 T� � 2 � ∂2

uvΩ
�
Ω � 1 � 2 � ∂uΩ

� � ∂vΩ
�
Ω � 2 � 2 � ∂2

uvr
�
r � 1 � 2 � ∂ur

� � ∂vr
�
r � 2� 2 � ∂ur

� � ∂vr
�
r � 2� � 2 � ∂2

uvΩ
�
Ω � 1 � 2 � ∂uΩ

� � ∂vΩ
�
Ω � 2 � 2 � ∂2

uvr
�
r � 1;
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by the symmetry between u and v,

R22 � � 2 � ∂2
vvr
�
r � 1 � 4 � ∂vΩ

� � ∂vr
� � Ωr

� � 1;

R13 � Γi
13 B i � Γi

i3 B 1 � Γm
13Γi

im � Γm
i3Γi

1m� Γ3
13 B 3 � Γ4

43 B 1 � Γ3
13Γ4

43 � Γ4
43Γ4

14� 0 � 0 � S � ∂ur
�
r � 1 T cotθ � cotθ S � ∂ur

�
r � 1 T� 0 �

and similarly R23 � 0;

R14 � Γi
14 B i � Γi

i4 B 1 � Γm
14Γi

im � Γm
i4Γi

1m� Γ4
14 B 4� 0 �

and similarly R24 � 0;

R33 � Γi
33 B i � Γi

i3 B 3 � Γm
33Γi

im � Γm
i3Γi

3m� Γ1
33 B 1 � Γ2

33 B 2 � Γ4
43 B 3 � Γ1

33 � Γ1
11 � Γ3

31 � Γ4
41
� � Γ2

33 � Γ2
22 � Γ3

32 � Γ4
42
�� � 2Γ3

13Γ1
33 � 2Γ2

33Γ3
32 � Γ4

43Γ4
34
�� Γ1

33 B 1 � Γ2
33 B 2 � Γ4

43 B 3 � Γ1
33Γ1

11 � Γ2
33Γ2

22 � Γ4
43Γ4

34� ∂u
S 2r � ∂vr

�
Ω � 2 T � ∂v

S 2r � ∂ur
�
Ω � 2 T � ∂θ � cotθ

� � S 2r � ∂vr
�
Ω � 2 TUS 2 � ∂uΩ

�
Ω � 1 T� S 2r � ∂ur

�
Ω � 2 TUS 2 � ∂vΩ

�
Ω � 1 T � � cotθ

� 2� 2 � ∂ur
� � ∂vr

�
Ω � 2 � 2r � ∂2

uvr
�
Ω � 2 � 4r � ∂vr

� � ∂uΩ
�
Ω � 3� 2 � ∂vr

� � ∂ur
�
Ω � 2 � 2r � ∂2

uvr
�
Ω � 2 � 4r � ∂ur

� � ∂vΩ
�
Ω � 3� 1 � 4r � ∂vr

� � ∂uΩ
�
Ω � 3 � 4r � ∂ur

� � ∂vΩ
�
Ω � 3� 4 � ∂ur

� � ∂vr
�
Ω � 2 � 4r � ∂2

uvr
�
Ω � 2 � 1;

R34 � R43 � Γi
34 B i � Γi

i4 B 3 � Γm
34Γi

im � Γm
i4Γi

3m� 0;
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and finally,

R44 � Γi
44 B i � Γi

i4 B 4 � Γm
44Γi

im � Γm
i4Γi

4m� Γ1
44 B 1 � Γ2

44 B 2 � Γ3
44 B 3 � Γ1

44 � Γ1
11 � Γ3

31 � Γ4
41
� � Γ2

44 � Γ2
22 � Γ3

32 � Γ4
42
�� Γ3

44Γ4
43 � � 2Γ1

44Γ4
41 � 2Γ2

44Γ4
42 � 2Γ3

44Γ4
43
�� Γ1

44 B 1 � Γ2
44 B 2 � Γ3

44 B 3 � Γ1
44Γ1

11 � Γ2
44Γ2

22 � Γ3
44Γ4

43� ∂u
S 2r � ∂vr

�
sin2θΩ � 2 T � ∂v

S 2r � ∂ur
�
sin2θΩ � 2 T � ∂θ � � sinθcosθ

�� S 2r � ∂vr
�
sin2θΩ � 2 TOS 2 � ∂uΩ

�
Ω � 1 T � S 2r � ∂ur

�
sin2θΩ � 2 T)S 2 � ∂vΩ

�
Ω � 1 T� � � sinθcos θ

�
cot θ� 2 � sin2θ

� � ∂ur
� � ∂vr

�
Ω � 2 � 2 � sin2θ

�
r � ∂2

uvr
�
Ω � 2 � 4 � sin2θ

�
r � ∂vr

� � ∂uΩ
�
Ω � 3� 2 � sin2θ

� � ∂vr
� � ∂ur

�
Ω � 2 � 2 � sin2θ

�
r � ∂2

uvr
�
Ω � 2 � 4 � sin2θ

�
r � ∂ur

� � ∂vΩ
�
Ω � 3� sin2θ � 4 � sin2θ

�
r � ∂vr

� � ∂uΩ
�
Ω � 3 � 4 � sin2θ

�
r � ∂ur

� � ∂vΩ
�
Ω � 3� 4 � sin2θ

� � ∂ur
� � ∂vr

�
Ω � 2 � 4 � sin2θ

�
r � ∂2

uvr
�
Ω � 2 � sin2θ 4

To summarize: all components of the Ricci tensor are zero except

R11 � � 2 � ∂2
uur
�
r � 1 � 4 � ∂uΩ

� � ∂ur
� � Ωr

� � 1

R12 � R21 � � 2 � ∂2
uvΩ

�
Ω � 1 � 2 � ∂uΩ

� � ∂vΩ
�
Ω � 2 � 2 � ∂2

uvr
�
r � 1

R22 � � 2 � ∂2
vvr
�
r � 1 � 4 � ∂vΩ

� � ∂vr
� � Ωr

� � 1

R33 � 4 � ∂ur
� � ∂vr

�
Ω � 2 � 4r � ∂2

uvr
�
Ω � 2 � 1

R44 � � sin2θ
� S 4 � ∂ur

� � ∂vr
�
Ω � 2 � 4r � ∂2

uvr
�
Ω � 2 � 1 T 4

Now the scalar curvature R � g jkR jk is just

R � 2g12R12 � g33R33 � g44R44� � 4Ω � 2 S � 2 � ∂2
uvΩ

�
Ω � 1 � 2 � ∂uΩ

� � ∂vΩ
�
Ω � 2 � 2 � ∂2

uvr
�
r � 1 T� r � 2 S 4 � ∂ur

� � ∂vr
�
Ω � 2 � 4r � ∂2

uvr
�
Ω � 2 � 1 T�§� r sinθ

� � 2 S � sin2θ
� S 4 � ∂ur

� � ∂vr
�
Ω � 2 � 4r � ∂2

uvr
�
Ω � 2 � 1 T�T� 8 � ∂2

uvΩ
�
Ω � 3 � 8 � ∂uΩ

� � ∂vΩ
�
Ω � 4 � 16 � ∂2

uvr
�
r � 1Ω � 2 � 8 � ∂ur

� � ∂vr
�
r � 2Ω � 2 � 2r � 2 �
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and so the Einstein tensor Gi j � Ri j � 1
2 Rgi j has the following non-zero components:

G11 � R11 � � 2 � ∂2
uur
�
r � 1 � 4 � ∂uΩ

� � ∂ur
� � Ωr

� � 1;

G22 � R22 � � 2 � ∂2
vvr
�
r � 1 � 4 � ∂vΩ

� � ∂vr
� � Ωr

� � 1;

G12 � R12 � 1
2 Rg12� � 2 � ∂2

uvΩ
�
Ω � 1 � 2 � ∂uΩ

� � ∂vΩ
�
Ω � 2 � 2 � ∂2

uvr
�
r � 1� 1

4Ω2 S 8 � ∂2
uvΩ

�
Ω � 3 � 8 � ∂uΩ

� � ∂vΩ
�
Ω � 4 � 16 � ∂2

uvr
�
r � 1Ω � 2� 8 � ∂ur

� � ∂vr
�
r � 2Ω � 2 � 2r � 2 T� 2 � ∂2

uvr
�
r � 1 � 2 � ∂ur

� � ∂vr
�
r � 2 � 1

2 r � 2Ω2;

G33 � R33 � 1
2 Rg33� 4 � ∂ur
� � ∂vr

�
Ω � 2 � 4r � ∂2

uvr
�
Ω � 2 � 1� 1

2 r2 S 8 � ∂2
uvΩ

�
Ω � 3 � 8 � ∂uΩ

� � ∂vΩ
�
Ω � 4 � 16 � ∂2

uvr
�
r � 1Ω � 2� 8 � ∂ur

� � ∂vr
�
r � 2Ω � 2 � 2r � 2 T� � 4r � ∂2

uvr
�
Ω � 2 � 4r2 � ∂2

uvΩ
�
Ω � 3 � 4r2 � ∂uΩ

� � ∂vΩ
�
Ω � 4;

and by inspection,

G44 ��� sin2θ
� S � 4r � ∂2

uvr
�
Ω � 2 � 4r2 � ∂2

uvΩ
�
Ω � 3 � 4r2 � ∂uΩ

� � ∂vΩ
�
Ω � 4 T 4

Plugging these components into the Einstein equation G � 2T now clearly yields equations (3.4)

through (3.7).
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Appendix C

COMPUTING θ · IN SPHERICAL SYMMETRY

Fix coordinates u � u0 and v � v0 and consider the two-sphere of radius r � r � u0 � v0
�

comprising

the points �?� u0 � v0 � θ � φ �  ¸� M. We previously defined ∂u as the “ingoing” direction and ∂v as the

“outgoing” one; denoting these vectors by na and � a, respectively, we then have

θ � � θ ����� � hab∇b � a � hab �¹� a B b � � cΓc
ab
� �

where hab � r2 � gS2
�
ab is the induced metric on the given two-sphere and hab is its inverse. Using

the coordinate labeling as in Appendices A and B, we then have that h33 � r � 2, h44 � r � 2 � sinθ
� � 2,

and all other components are zero. Also, � a � gab � b � ga2 �
so � 1 � � 1

2 Ω2 and the other three components are zero. In particular, it is now clear that hab � a B b � 0

for all a � b � 1 � 2 � 3 � 4, and we are left with

θ � � � hab � cΓc
ab� � h33 � 1Γ1
33 � h44 � 1Γ1

44� � r � 2 . S � 1
2 Ω2 T . � 2r � ∂vr

�
Ω � 2 � � r � 2 � sinθ

� � 2 . S � 1
2Ω2 T . S 2r � ∂vr

� � sin2θ
�
Ω � 2 T� 2 � ∂vr

�
r � 1 4

Similarly, one computes that θ � � θ � n � � 2 � ∂ur
�
r � 1.
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