
Math 380a, Fall 2016 HOMEWORK #2 due Tue, October 11

Homework consists of four parts: the written assignment W1-W4 which counts towards
the final grade for the course, the extra credit problems which are for those who are interested
in taking the Putnam competition and anyone in search of an opportunity to boost his or
her grade, the presentation assignment (which will not be handed in) and (occasionally) a
reading assignment.

Please don’t get discouraged if you cannot immediately solve all of the problems, espe-
cially the presentation problems and the extra credit problems. The instructors are more
than happy to discuss any of the problems by e-mail and in person - in particular, during
Monday office hours - before the assignment is due. Hints are given upon request.

Written assignment (4 problems).

Writing Problem 1. .

1. Prove the following combinatorial identity in two ways:(
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(a) algebraically (using Pascal’s triangle), and
(b) combinatorially (by counting things in different ways).

2. Prove the following identity combinatorially (by counting something):
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Writing Problem 2. How many ways are there to represent a positive integer n as a sum
of

(a) k non-negative integers?

(b) k positive integers?

Note: the order of summation matters. For example, take n = 3, k = 2. Then the possible
sums in (a) are: 3 + 0, 2 + 1, 1 + 2, 0 + 3.

Writing Problem 3. Say that an integer is “complete” if its decimal representation contains
all the digits 0, 1, . . . , 9. How many integers with up to n decimal digits are complete?

Writing Problem 4. Let Γ be a simple connected graph (simple means Γ does not have
loops or multiple edges). Show that any two longest paths on Γ must share a vertex.



Extra Credit Problem 1. Let X be a set of points in an n-dimensional plane (n ≥ 3)
such that all point in X have coordinates ±1. Show that if the cardinality of X is bigger
than 2n+1/n then there exist three points in X which form an equilateral triangle.

Presentation assignment (5 problems).
Definition. A derangement is a permutation σ with no fixed points, i.e., one for which there
is no i such that i = σ(i). For example, 3, 1, 2 is a derangement, while 3, 2, 1 is not.

Presentation Problem 1. For any n ≥ 4, calculate the number of derangements of [n].
The answer can be in the form of a sum.

Definition. Let Γ be a directed (i.e., oriented) graph. A Hamiltonian path in Γ is a directed
path that visits every vertex exactly once.

Presentation Problem 2. Prove that every tournament (complete directed graph with no
loops) has a Hamiltonian path.

Definition. A regular polyhedron is a polyhedron such that all its vertices have the same
degree, and all its faces are congruent regular polygons. A convex regular polyhedron is also
called a Platonic solid.

Presentation Problem 3. Let P be a convex regular polyhedron. Show that the degree
of any vertex of P is at most 5. (Hint: use Euler’s formula, V − E + F = 2.)

Presentation Problem 4. An n-domino consists of two squares, each of which is marked
with a number of dots from 0 to n. (For any pair of numbers from 0 to n, there is exactly
one n-domino corresponding to it.)

1. How many n-dominos are there?

2. For what values of n is it possible to arrange the n-dominos in a circle so that the
adjacent halves of neighboring dominos show the same number? (E.g., for n = 2 this
is possible as follows 00, 01, 11, 12, 22, 20, and back to 00.)

Presentation Problem 5. You are given a set of n distinct real numbers, n ≥ 2. What is
the minimal cardinality of the set consisting of all distinct averages taken over all pairs of
these n numbers?


