Written assignment (4 problems).

W1. Show that $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ can never be an integer.
W2. Suppose $p(x)=\sum_{i=0}^{r} a_{i} x^{i}$ is a polynomial with all coefficients a_{i} integers. Assume that a_{0}, a_{r}, and $p(1)$ are all odd. Show that p cannot have rational roots.

W3. We call an integer square-free if it is the product of single powers of primes (i.e., no square power of a prime divides it). For example, 6 is square-free, while 12 is not.

Given $n \in \mathbb{N}$, show that one can find a large enough integer A such that none of the numbers $A, A+1, A+2, \ldots, A+n-1$ is square-free.
$\underline{\text { W4. Prove that }} a_{m, n}=\frac{(2 m)!(2 n)!}{m!n!(m+n)!}$ is an integer for any two non-negative integers m, n.
EC1. Show that $\sum_{k=0}^{n}\binom{2 n+1}{2 k+1} 2^{3 k}$ is not divisible by 5 for any integer $n \geq 0$.
EC2. Show that $n^{2} / 2<\sigma(n) \phi(n)<n^{2}$.
Presentation assignment (5 problems).
P1. Let f be a function defined on positive integers such that $f(1)=1, f(2 n)=f(n)$, and $f(2 n+1)=f(n)+1$. Find an expression for f.

P2. A polynomial with integer coefficients is called primitive if its coefficients are relatively prime.

1. Show that a product of two primitive polynomials is primitive.
2. Prove Gauss' Lemma: If a polynomial with integer coefficients can be factored as a product of two non-constant polynomials with rational coefficients then it can also be factored as a product of two no-constant polynomials with integer coefficients.

P3. A positive integer n is called perfect if $\sigma(n)=2 n$.

1. Show that if $2^{k}-1$ is a prime then $2^{k-1}\left(2^{k}-1\right)$ is perfect.
2. Prove the partial converse: every even perfect number must be of the form $2^{k-1}\left(2^{k}-1\right)$, where $2^{k}-1$ is a prime.

P4. Let p be an odd prime and let $P(x)$ be a polynomial of degree at most $p-2$.

1. Show that if $P(x)$ has integer coefficients then

$$
P(n)+P(n+1)+\cdots+P(n+p-1)
$$

is divisible by p for any integer n.
2. Conversely, suppose that

$$
P(n)+P(n+1)+\cdots+P(n+p-1)
$$

is divisible by p for any integer n. Is it true that $P(x)$ must have integer coefficients?

P5. Find all integers n such that $x^{4}-2(n+2017) x^{2}+(n-2017)^{2}$ factors into two polynomials with integer coefficients.

