Written assignment (4 problems).

<u>W1.</u> Let x be a real number such that |x| < 1. Compute $\lim_{n\to\infty} \prod_{i=1}^n (1+x^{2^i})$.

<u>W2.</u> Define the sequence $\{x_n\}_{n=1}^{\infty}$ by $x_0 = \alpha$, and $x_{n+1} = \frac{e^{x_n} - 1}{2}$. Prove the convergence or divergence of the sequence for $\alpha = 0.5$ and $\alpha = 2$.

<u>W3.</u> Let $x_0 = 1$, and $x_{n+1} = x_n + 10^{-10^{x_n}}$ for all $n \ge 1$. What can we say about $\lim_{n \to \infty} x_n$? <u>W4.</u> Evaluate $\lim_{n \to \infty} \sum_{j=1}^n \frac{n}{n^2 + j^2}$.

<u>EC.</u> Let f(x) be a positive valued function over the reals such that f'(x) > f(x) for all x. For what k must there exists N such that $f(x) > e^{kx}$ for x > N?

Presentation assignment (4 problems).

<u>P1.</u> Find the limit

$$\lim_{n \to \infty} \left(\prod_{k=1}^n \left(1 + \frac{k}{n} \right) \right)^{\frac{1}{n}} .$$

P2. For a fixed, positive integer k, the n^{th} derivative of $\frac{1}{x^{k-1}}$ has the form $\frac{P_n(x)}{(x^{k-1})^{n+1}}$, where $P_n(x)$ is a polynomial. Find $P_n(1)$.

<u>P3.</u> For any real number α , we denote by $\{\alpha\}$ the fractional part of α . Consider the sequence $a_n = \{n\sqrt{2}\}, n \ge 1$.

- 1. Show that the sequence a_n contains a subsequence that converges to 0.
- 2. Show that the set $a_n, n \ge 1$, is *dense* in the interval [0, 1]. (A subset S is called *dense* if for any real number $x \in [0, 1]$, any open interval centered at x contains a number from S. Otherwise said, show that there are terms in $\{a_n\}$ arbitrarily close to any chosen number $x \in [0, 1]$.)

<u>P4.</u> Let a, b > 0. Prove that $\lim_{n\to\infty} (a^n + b^n)^{1/n}$ exists and calculate it.