Written assignment (4 problems).

W1. Let x be a real number such that $|x|<1$. Compute $\lim _{n \rightarrow \infty} \prod_{i=1}^{n}\left(1+x^{2^{i}}\right)$.
W2. Define the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ by $x_{0}=\alpha$, and $x_{n+1}=\frac{e^{x_{n}-1}}{2}$. Prove the convergence or divergence of the sequence for $\alpha=0.5$ and $\alpha=2$.
W3. Let $x_{0}=1$, and $x_{n+1}=x_{n}+10^{-10^{x_{n}}}$ for all $n \geq 1$. What can we say about $\lim _{n \rightarrow \infty} x_{n}$?
W4. Evaluate $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{n}{n^{2}+j^{2}}$.

EC. Let $f(x)$ be a positive valued function over the reals such that $f^{\prime}(x)>f(x)$ for all x. For what k must there exists N such that $f(x)>e^{k x}$ for $x>N$?

Presentation assignment (4 problems).

P1. Find the limit

$$
\lim _{n \rightarrow \infty}\left(\prod_{k=1}^{n}\left(1+\frac{k}{n}\right)\right)^{\frac{1}{n}}
$$

P2. For a fixed, positive integer k, the $n^{\text {th }}$ derivative of $\frac{1}{x^{k}-1}$ has the form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$, where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.

P3. For any real number α, we denote by $\{\alpha\}$ the fractional part of α. Consider the sequence $a_{n}=\{n \sqrt{2}\}, n \geq 1$.

1. Show that the sequence a_{n} contains a subsequence that converges to 0 .
2. Show that the set $a_{n}, n \geq 1$, is dense in the interval $[0,1]$. (A subset S is called dense if for any real number $x \in[0,1]$, any open interval centered at x contains a number from S. Otherwise said, show that there are terms in $\left\{a_{n}\right\}$ arbitrarily close to any chosen number $x \in[0,1]$.)

P4. Let $a, b>0$. Prove that $\lim _{n \rightarrow \infty}\left(a^{n}+b^{n}\right)^{1 / n}$ exists and calculate it.

