Reading: Section 5.5 in [Zeitz].
Civic duty: don't forget to vote!

## Written assignment (5 problems).

Writing Problem 1. Let $a_{1}, \ldots, a_{n}$ be positive numbers. Show that

$$
\left(a_{1}+\cdots+a_{n}\right)\left(\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}\right) \geq n^{2}
$$

Writing Problem 2. a. Prove AM-GM for four numbers.
b. Prove AM-GM for three numbers. Hint: Use part a).
c. Prove AM-GM in general. Use the strategy developed in parts a), b).

Writing Problem 3. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be positive numbers. Show that $\frac{a_{1}+\ldots+a_{n}}{b_{1}+\ldots+b_{n}}$ is between the smallest and the largest elements in the set $\left\{\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \ldots, \frac{a_{n}}{b_{n}}\right\}$.

Writing Problem 4. Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ with $n \geq 2$ are real numbers larger than -1 , and moreover assume that all $a_{j}$ 's have the same sign. Show that

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right)>1+a_{1}+a_{2}+\ldots+a_{n} .
$$

Extra Credit Problem 1. Let $a, b, c, d \geq 0$. Prove that $\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d} \geq \frac{64}{a+b+c+d}$.

Presentation assignment (5 problems).
Presentation Problem 1. Let $n \geq 2$. Prove that $\frac{1}{2^{3}}+\frac{1}{3^{3}}+\ldots+\frac{1}{n^{3}}<\frac{1}{2}$.
Presentation Problem 2. Let $a_{1}, \ldots, a_{n}$ be a sequence of positive numbers and let $b_{1}, \ldots, b_{n}$ be any permutation of the first sequence. Show that

$$
\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\ldots+\frac{a_{n}}{b_{n}} \geq n
$$

Presentation Problem 3. Let $x, y, z$ be positive real numbers such that $x y z=1$. What is the minimal value of

$$
\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{y+x} ?
$$

Hint: Read the book!

Presentation Problem 4. Let $a$ be a real number and $n$ a positive integer, with $a>1$. Show that

$$
a^{n}-1>n\left(a^{\frac{n+1}{2}}-a^{\frac{n-1}{2}}\right) .
$$

Presentation Problem 5. For which integer $n$ is $1 / n$ the closest to $\sqrt{1000000}-\sqrt{999999}$ ?

