Reading: Chapter 9 [Zeitz].

Written assignment (4 problems).
Writing Problem 1. Define the sequence $\left(a_{n}\right)$ by $a_{0}=\alpha$ and

$$
a_{n+1}=5 a_{n}-a_{n}^{2}
$$

for $n \geq 1$. Explain/prove whether the sequence converges or not for $\alpha=5$. What about for $\alpha=-1$?

Writing Problem 2. Let x be a real number such that $|x|<1$. Compute

$$
\lim _{n \rightarrow \infty} \prod_{i=1}^{n}\left(1+x^{2^{i}}\right)
$$

Writing Problem 3. Let $x_{0}=1$, and $x_{n+1}=x_{n}+10^{-10^{x_{n}}}$ for all $n \geq 1$. What can we say about $\lim _{n \rightarrow \infty} x_{n}$?

Writing Problem 4. Given $a>1$, find $\lim _{x \rightarrow \infty}\left(\frac{1}{x} \cdot \frac{a^{x}-1}{a-1}\right)^{\frac{1}{x}}$.
Extra Credit Problem 1. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\left\lfloor\frac{2 n}{k}\right\rfloor-2\left\lfloor\frac{n}{k}\right\rfloor\right)
$$

Presentation assignment (5 problems).
Presentation Problem 1. Find the limit

$$
\lim _{n \rightarrow \infty}\left(\prod_{k=1}^{n}\left(1+\frac{k}{n}\right)\right)^{\frac{1}{n}}
$$

Presentation Problem 2. For a fixed, positive integer k, the $n^{t h}$ derivative of $\frac{1}{x^{k}-1}$ has the form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$, where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.

Presentation Problem 3. Evaluate $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{n}{n^{2}+j^{2}}$.
Presentation Problem 4. Let $f(x)$ be a positive valued function over the reals such that $f^{\prime}(x)>f(x)$ for all x. For what k must there exists N such that $f(x)>e^{k x}$ for $x>N$?

Presentation Problem 5. For any real number α, we denote by $\{\alpha\}$ the fractional part of α. Consider the sequence $a_{n}=\{n \sqrt{2}\}, n \geq 1$.

1. Show that the sequence a_{n} contains a subsequence that converges to 0 .
2. Show that the set $a_{n}, n \geq 1$, is dense in the interval $[0,1]$. (Recall that a subset S is called dense if for any real number $x \in[0,1]$, any open interval centered at x contains a number from S.)
