LECTURE II, MATH 380A

BASIC COMBINATORICS

Topics:

- Counting and Binomial formula
- Graph theory
- Exclusion/inclusion

Sections in the book: 6.1, 6.2 and 6.3.

1. Counting and binomial formula

Recall binomial coefficients and formula, notation $\binom{n}{k}=C_{n}^{k}$, Pascal triangle.
Example 1.1. Show in two ways, algebraic and enumerative, $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$.
Example 1.2. Balls in Urns formula. The number of different ways we can place n indistinguishable balls into k distinguishable urns is

$$
\binom{n+k-1}{n}=\binom{n+k-1}{k-1}
$$

How to see that? Write down $n+k-1$ dots in a row, and choose $k-1$ dots. The dots between i th and $(i+1)$ st dot go into the $(i+1)$ st urn.

Example 1.3. Vandermonde convolution formula

$$
\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}
$$

Algebraic proof. Compare the coefficient of x^{k} in $(1+x)^{n+m}$ and in $(1+x)^{n}(1+x)^{m}$.
Enumerative (combinatorial, counting) proof. Plot $n+m$ dots, and divide into 2 groups of n and m dots respectively. To choose k dots we need to choose i dots from the first group and $k-i$ from the second, for all $0 \leq i \leq k$.

2. Inclusion/Exclusion formula

$$
\left|\bigcup A_{i}\right|=\sum\left|A_{i}\right|-\sum_{i, j}\left|A_{i} \cap A_{j}\right|+\sum_{i, j, k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots
$$

In particular, we can get better and better estimations of $\left|\bigcup A_{i}\right|$ by taking the first few terms; lower bounds with even numbers of terms and upper bounds with odd number of terms.

$$
\sum\left|A_{i}\right| \geq\left|\bigcup A_{i}\right| \geq \sum\left|A_{i}\right|-\sum_{i, j}\left|A_{i} \cap A_{j}\right|
$$

Date: 10.04.18.

$$
\begin{gathered}
\sum\left|A_{i}\right|-\sum_{i, j}\left|A_{i} \cap A_{j}\right|+\sum_{i, j, k}\left|A_{i} \cap A_{j} \cap A_{k}\right| \geq\left|\bigcup A_{i}\right| \geq \\
\sum\left|A_{i}\right|-\sum_{i, j}\left|A_{i} \cap A_{j}\right|+\sum_{i, j, k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\sum_{i, j, k, \ell}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{\ell}\right|
\end{gathered}
$$

etc.

3. GRaphs

Vertices, edges, degrees, trees, completed graphs, directed graphs, tournaments, Euler formula.

Example 3.1. Question: is it possible that in a class of 77 people each student is friends with exactly 13 other students.

Theorem. The sum of degrees is always even.
Observation. In a tree, the number of vertices exceeds the numbers of edges by 1.

Example 3.2. Prove the converse.

Definition 3.3. Euler cycle $=$ cycle that traverses every edge once; Euler path $=$ path that traverses every edge once.

Example 3.4. In every connected graph with all vertices of even degrees there exists an Euler cycle.

Definition 3.5. (Homework related). A Hamiltonian path is a path that travels exactly once through every vertex of the graph. A Hamiltonian cycle is a Hamiltonian path which is also a cycle.

Example 3.6. Show that the Euler formula holds for any planar graph:

$$
V-E+F=2
$$

Prove by induction on E : delete an edge until we get a tree, then use te "observation" for a tree.

Note: Also mention polygons; and emphasize that $V-E+F$ is an invariant in this problem.

