Participation Quiz: Friday Oct 28 in class

Problem 1. Suppose $T : \mathbb{R}^m \to \mathbb{R}^k$ and $S : \mathbb{R}^k \to \mathbb{R}^n$ are linear transformations, and define the function $R : \mathbb{R}^m \to \mathbb{R}^n$ by R(x) = S(T(x)). Show that R is a linear transformation.

Proof. Suppose **u** and **v** are elements of \mathbb{R}^m . Then we have

$$R(\mathbf{u} + \mathbf{v}) = S(T(\mathbf{u} + \mathbf{v}))$$
 (by definition of R)

$$= S(T(\mathbf{u}) + T(\mathbf{v}))$$
 (since T is a linear transformation)

$$= S(T(\mathbf{u})) + S(T(\mathbf{v}))$$
 (since S is a linear transformation)

$$= R(\mathbf{u}) + R(\mathbf{v})$$
 (by definition of R).

Now suppose that **u** is an element of \mathbb{R}^m and r is a real number (i.e. $r \in \mathbb{R}$). Then we have

$R(r\mathbf{u})$	=	$S(T(r\mathbf{u}))$	(by definition of R)
	=	$S(rT(\mathbf{u}))$	(since T is a linear transformation)
	=	$rS(T(\mathbf{u}))$	(since S is a linear transformation)
	=	$rR(\mathbf{u})$	(by definition of R).

Therefore R satisfies the conditions of being a linear transformation, and so we are done. \Box

Problem 2. Suppose
$$S(x) = Ax$$
 and $T(x) = Bx$, where $A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$.

By Problem 1, we know that R(x) = S(T(x)) is a linear transformation, and by theorem 3.8 there is some matrix C so that R(x) = Cx for all x. Find such a matrix C.

Proof. First note that C should be a 2×2 matrix since if we compare with problem 1 we see that m = n = 2 and k = 3. Now, by the proof of theorem 3.8, we know that C will be the matrix with columns $R(\mathbf{e}_1)$ and $R(\mathbf{e}_2)$. So we can find C by computing these vectors. We have $\begin{bmatrix} 1 & 1 \end{bmatrix}$

$$R(\mathbf{e}_1) = S(T(\mathbf{e}_1)) \text{ and } R(\mathbf{e}_2) = S(T(\mathbf{e}_2). \text{ Now, } T(\mathbf{e}_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ and so}$$
$$S(T(\mathbf{e}_1)) = AT(\mathbf{e}_1) = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Similarly, we have $T(\mathbf{e}_2) = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$, and so

$$S(T(\mathbf{e}_2)) = AT(\mathbf{e}_2) = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Therefore we have $C = [T(\mathbf{e}_1) T(\mathbf{e}_2)] = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} \square$