Participation Quiz: Friday Oct 28 in class

Problem 1. Suppose $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ and $S: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ are linear transformations, and define the function $R: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ by $R(x)=S(T(x))$. Show that R is a linear transformation.

Proof. Suppose \mathbf{u} and \mathbf{v} are elements of \mathbb{R}^{m}. Then we have

$$
\begin{aligned}
R(\mathbf{u}+\mathbf{v}) & =S(T(\mathbf{u}+\mathbf{v})) & & \text { (by definition of } R \text {) } \\
& =S(T(\mathbf{u})+T(\mathbf{v})) & & \text { (since } T \text { is a linear transformation) } \\
& =S(T(\mathbf{u}))+S(T(\mathbf{v})) & & \text { (since } S \text { is a linear transformation) } \\
& =R(\mathbf{u})+R(\mathbf{v}) & & \text { (by definition of } R) .
\end{aligned}
$$

Now suppose that \mathbf{u} is an element of \mathbb{R}^{m} and r is a real number (i.e. $r \in \mathbb{R}$). Then we have

$$
\begin{aligned}
R(r \mathbf{u}) & =S(T(r \mathbf{u})) & & \text { (by definition of } R \text {) } \\
& =S(r T(\mathbf{u})) & & \text { (since } T \text { is a linear transformation) } \\
& =r S(T(\mathbf{u})) & & \text { (since } S \text { is a linear transformation) } \\
& =r R(\mathbf{u}) & & \text { (by definition of } R \text {). }
\end{aligned}
$$

Therefore R satisfies the conditions of being a linear transformation, and so we are done.
Problem 2. Suppose $S(x)=A x$ and $T(x)=B x$, where $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 2 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 1 & 0\end{array}\right]$.
By Problem 1, we know that $R(x)=S(T(x))$ is a linear transformation, and by theorem 3.8 there is some matrix C so that $R(x)=C x$ for all x. Find such a matrix C.

Proof. First note that C should be a 2×2 matrix since if we compare with problem 1 we see that $m=n=2$ and $k=3$. Now, by the proof of theorem 3.8, we know that C will be the matrix with columns $R\left(\mathbf{e}_{1}\right)$ and $R\left(\mathbf{e}_{2}\right)$. So we can find C by computing these vectors. We have $R\left(\mathbf{e}_{1}\right)=S\left(T\left(\mathbf{e}_{1}\right)\right)$ and $R\left(\mathbf{e}_{2}\right)=S\left(T\left(\mathbf{e}_{2}\right)\right.$. Now, $T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, and so

$$
S\left(T\left(\mathbf{e}_{1}\right)\right)=A T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Similarly, we have $T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, and so

$$
S\left(T\left(\mathbf{e}_{2}\right)\right)=A T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Therefore we have $C=\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right]$

