Prove or disprove: If $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$ is a set of vectors in \mathbb{R}^n that spans \mathbb{R}^n , then $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$ is linearly independent.

Proof. If $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$ is linearly dependent, then one of them is in the span of the others, say it's \mathbf{a}_1 .

Then span{ $\mathbf{a}_1, ..., \mathbf{a}_n$ } = span{ $\mathbf{a}_2, ..., \mathbf{a}_n$ }. But n - 1 < n, and so { $\mathbf{a}_2, ..., \mathbf{a}_n$ } cannot span \mathbb{R}^n . In particular, span{ $\mathbf{a}_1, ..., \mathbf{a}_n$ } $\neq \mathbb{R}^n$, and so the set doesn't span.

Thus we have shown that if the set of vectors spans \mathbb{R}^n , then it must be linearly independent. \Box

Prove or disprove: If $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$ is a linearly independent set of vectors in \mathbb{R}^n , then $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$ spans \mathbb{R}^n .

Proof. Suppose the set does not span \mathbb{R}^n . Then there exists $\mathbf{a} \in \mathbb{R}^n$ that is not in span $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$. Since n + 1 > n, we know that the set $\{\mathbf{a}, \mathbf{a}_1, ..., \mathbf{a}_n\}$ is linearly dependent. I claim that this implies that $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$ is also linearly dependent.

Since $\{\mathbf{a}, \mathbf{a}_1, ..., \mathbf{a}_n\}$ is linearly dependent, there exist $c, c_1, ..., c_n$ not all zero with $c\mathbf{a} + c_1\mathbf{a}_1 + ... + c_n\mathbf{a}_n = \mathbf{0}$. But notice that we have to have $c_1 = 0$ have a structure of the series of the serie

But notice that we have to have c = 0, because otherwise we could solve for **a** in terms of $\mathbf{a}_1, ..., \mathbf{a}_n$, and this isn't possible since it's not in the span. Therefore we actually have $c_1\mathbf{a}_1 + ..., c_n\mathbf{a}_n = \mathbf{0}$, where $c_1, ..., c_n$ are not all zero, and so $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$ is linearly dependent. Thus we have shown that if the set is linearly independent, it must also span \mathbb{P}^n .

Thus we have shown that if the set is linearly independent, it must also span \mathbb{R}^n . \Box