Annie's Survival Kit 1 - Math 324

1. (10 points) Evaluate $\int_{0}^{\frac{1}{4}} \int_{\sqrt{y}}^{\frac{1}{2}} \frac{e^{x}}{x} d x d y$ by changing the order of integration.

Hint 1: first figure out what is the integration region R.
Hint 2: recall that $\int u d v=u v-\int v d u$.
Answer: Note that $y_{\min }=0, y_{\max }=\frac{1}{4}, x_{\min }(y)=\sqrt{y}$ and $x_{\max }(y)=\frac{1}{2}$. Thus, the region of integration is

Thus, switching the way we slice, we get that $x_{\min }=0, x_{\max }=\frac{1}{2}, y_{\min }(x)=0$ and $y_{\max }(x)=x^{2}$. Therefore, our new double integral is

$$
\int_{0}^{\frac{1}{2}} \int_{0}^{x^{2}} \frac{e^{x}}{x} d y d x
$$

First solving the inner integral, we obtain

$$
\left[\frac{e^{x}}{x} y\right]_{0}^{x^{2}}=x e^{x}
$$

Thus, we obtain the outer integral $\int_{0}^{\frac{1}{2}} x e^{x} d x$. We need to use integration by parts: we set $u=x$, $d v=e^{x} d x$, so that $d u=d x, v=e^{x}$. Thus, the outer integral is equal to

$$
\left[x e^{x}\right]_{0}^{\frac{1}{2}}-\int_{0}^{\frac{1}{2}} e^{x} d x=\frac{1}{2} e^{\frac{1}{2}}-\left(e^{\frac{1}{2}}-1\right)=-\frac{1}{2} e^{\frac{1}{2}}+1
$$

2. (10 points) (a) (5 points) Switch the order of integration of $\int_{-1}^{1} \int_{-\sqrt{2-x^{2}}}^{x} y \sqrt{x^{2}+y^{2}} d y d x$ to $d x d y$. Do not evaluate.
Answer: Note that $x_{\min }=-1, x_{\max }=1, y_{\min }(x)=-\sqrt{2-x^{2}}$ and $y_{\max }(x)=x$. Thus, the region of integration is

Thus, switching the way we slice, we'll need two double integrals: one for R_{1} and one for R_{2}.

For R_{1}, we have that $y_{\text {min }}=-1, y_{\max }=1, x_{\min }(y)=y$ and $x_{\max }(y)=1$. For R_{2}, we have that $y_{\text {min }}=-\sqrt{2}, y_{\text {max }}=-1, x_{\text {min }}(y)=-\sqrt{2-y^{2}}$ and $x_{\max }(y)=\sqrt{2-y^{2}}$ Therefore, our new double integrals are

$$
\int_{-1}^{1} \int_{y}^{1} y \sqrt{x^{2}+y^{2}} d x d y+\int_{-\sqrt{2}}^{-1} \int_{-\sqrt{2-y^{2}}}^{\sqrt{2-y^{2}}} y \sqrt{x^{2}+y^{2}} d x d y
$$

(b) (5 points) Switch $\int_{-1}^{1} \int_{-\sqrt{2-x^{2}}}^{x} y \sqrt{x^{2}+y^{2}} d y d x$ to polar coordinates. Do not evaluate.

Answer: Here again, our region splits into two: R_{1} and R_{2}.

Here, R_{1} is such that the $\theta_{\text {min }}=-\frac{\pi}{4}, \theta_{\max }=\frac{\pi}{4}, r_{\min }(\theta)=0$ and $r_{\max }(\theta)=\frac{1}{\cos (\theta)}$ since we exit on $x=1$ (i.e. $r \cos (\theta)=1$).

For R_{2}, we have $\theta_{\min }=\frac{5 \pi}{4}, \theta_{\max }=-\frac{\pi}{4}, r_{\min }(\theta)=0$ and $r_{\max }(\theta)=\sqrt{2}$ since we exit on the circle $x^{2}+y^{2}=2$ (i.e. $r^{2}=2$).
Finally, note that $y \sqrt{x^{2}+y^{2}}$ becomes $r \sin (\theta) r$ and $d y d x$ becomes $r d r d \theta$. Therefore, we obtain

$$
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{\frac{1}{\cos (\theta)}} r^{3} \sin (\theta) d r d \theta+\int_{\frac{5 \pi}{4}}^{-\frac{\pi}{4}} \int_{0}^{\sqrt{2}} r^{3} \sin (\theta) d r d \theta
$$

3. (10 points) (a) (7 points) Find the center of mass of a flat object with density proportional to the distance to the x-axis, and with region R bounded by $y=x^{2}-1$ and $y=0$.
Answer: The region in question is

We can slice either vertically or horizontally. I'll choose the former. Then $x_{\min }=-1, x_{\max }=1$, $y_{\min }(x)=x^{2}-1$ and $y_{\max }(x)=0$. Moreover, the density is $\delta=k|y|$ for some constant k; since y is negative on our whole region, $\delta=-k y$. Thus, using the formula for the center of mass, we obtain

$$
\begin{aligned}
& \bar{x}=\frac{\int_{-1}^{1} \int_{x^{2}-1}^{0} x \cdot(-k y) d y d x}{\int_{-1}^{1} \int_{x^{2}-1}^{0}-k y d y d x} \\
& \bar{y}=\frac{\int_{-1}^{1} \int_{x^{2}-1}^{0} y \cdot(-k y) d y d x}{\int_{-1}^{1} \int_{x^{2}-1}^{0}-k y d y d x}
\end{aligned}
$$

Note that we can already notice that $\bar{x}=0$ since the region is symmetric around the y-axis and the density is the same for all points at a same height y. Therefore, the contribution of any point (x, y) in the region will cancel out with the contribution of point $(-x, y)$ (which is also in the region).
For \bar{y}, we must actually evaluate the integrals. We have

$$
\int_{-1}^{1} \int_{x^{2}-1}^{0}-k y^{2} d y d x=-k \int_{-1}^{1}\left[\frac{y^{3}}{3}\right]_{x^{2}-1}^{0} d x=\frac{k}{3} \int_{-1}^{1} x^{6}-3 x^{4}+3 x^{2}-1 d x=\frac{-32 k}{105}
$$

and

$$
\int_{-1}^{1} \int_{x^{2}-1}^{0}-k y d y d x=-k \int_{-1}^{1}\left[\frac{y^{2}}{2}\right]_{x^{2}-1}^{0} d x=\frac{k}{2} \int_{-1}^{1} x^{4}-2 x^{2}+1 d x=\frac{8 k}{15}
$$

Therefore, $\bar{y}=-\frac{4}{7}$.
(b) (3 points) Without doing further calculations, find the center of mass of a flat object with density proportional to the distance to the line $y=3$, and with region R bounded by $y=x^{2}+2$ and $y=3$.
Answer: Note that both the region and density were shifted up by three units. Therefore, the center of mass also shifts up by three units to become $\left(0,-\frac{4}{7}+3\right)=\left(0, \frac{17}{7}\right)$.

