1. (10 points) Set up a triple integral to find the volume of the region bounded by \(z \leq x^2 + y^2, x^2 + y^2 \leq 3 \) and \(z \geq 0 \) using spherical coordinates. (Recall that volume is \(\iiint_R 1 \, dV \).) **Do not evaluate.**

Answer: The region is within the cylinder \(x^2 + y^2 = 3 \): below the paraboloid \(z = x^2 + y^2 \) and above the plane \(z = 0 \). Therefore, fixing \(\phi \) and \(\theta \), a half-line starting at the origin hits the paraboloid first (where \(\rho = \frac{\cos(\phi)}{\sin(\phi)} \) since \(z = x^2 + y^2 \) is \(\rho \cos(\phi) = \rho^2 \sin^2(\phi) \) in spherical coordinates) and then the cylinder (where \(\rho = \frac{x}{\sin(\phi)} \) since \(x^2 + y^2 = 3 \) is \(\rho^2 \sin^2(\phi) = 3 \)). The paraboloid and the cylinder intersect at \(z = 3 \) in a circle of radius \(\sqrt{3} \). Thus, \(\phi_{\text{min}} = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \), and since we are considering the region over \(z = 0 \), \(\phi_{\text{max}} = \frac{\pi}{2} \). Finally, \(\theta \) is from 0 to \(2\pi \) since we have a full revolution around the \(z \)-axis. Therefore, the volume is

\[
\iiint_0^{2\pi} \int_0^{2\pi} \int_0^{\sqrt{3}} 1 \rho^2 \sin(\phi) \, d\rho d\phi d\theta.
\]

2. (10 points) Switch \(\iiint_0^{2\pi} \int_0^{\sqrt{3}} \int_2^3 zr^4 \, dz \, dr \, d\theta + \iint_0^{2\pi} \int_0^{\sqrt{3}} \int_2^{\sqrt{4-r^2+2}} zr^4 \, dz \, dr \, d\theta \) to spherical coordinates.

Answer: The region in the first triple integral is part of a solid cylinder of radius \(\sqrt{3} \) centered around the \(z \)-axis of height 1 (with \(2 \leq z \leq 3 \)). The region in the second triple integral is the part of the ball of radius two centered at \((0, 0, 2) \) (since \(z = \sqrt{4 - r^2 + 2} \)) between \(2 \leq z \leq 3 \) and outside the aforementioned cylinder. Therefore, together, the region is the ball of radius two centered at \((0, 0, 2) \) cut with the planes \(z = 2 \) and \(z = 3 \).

With spherical coordinates, fixing \(\phi \) and \(\theta \), the half-line always enters through the plane \(z = 2 \) (where \(\rho = \frac{2}{\cos(\phi)} \)), but either comes out on the sphere (where \(\rho = 4 \cos(\phi) \) since \(x^2 + y^2 + (z-2)^2 = 4 \) which is equivalent to \(x^2 + y^2 + z^2 - 4z + 4 = 4 \) and thus \(\rho^2 - 4 \rho \cos(\phi) = 0 \)) or on the plane \(z = 3 \) (where \(\rho = \frac{3}{\cos(\phi)} \)). We will thus need two triple integrals here too.

When \(\phi = 0 \), we come out on \(z = 3 \) and continue to do so until angle \(\frac{\pi}{6} \). Then from \(\frac{\pi}{6} \) to \(\frac{\pi}{4} \), we come out on the sphere. Moreover, \(0 \leq \theta \leq 2\pi \) since we have a full revolution around the \(z \)-axis.

Finally, note that \(zr^4 \, dz \, dr \, d\theta = zr^3 \, dV = \rho \cos(\phi) \rho^3 \sin^3(\phi) \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta \). Thus, we obtain

\[
\iiint_0^{2\pi} \int_0^{\sqrt{3}} \int_0^{\rho(\cos(\phi))} \rho^6 \sin^4(\phi) \, d\rho d\phi d\theta + \iiint_0^{2\pi} \int_0^{\sqrt{3}} \int_{\rho(\cos(\phi))}^{\rho(\cos(\phi))} \rho^6 \sin^4(\phi) \, d\rho d\phi d\theta.
\]

3. (10 points) Find the area of the ellipse \((2x + 5y - 7)^2 + (3x - 7y + 1)^2 \leq 1 \).

Answer: Let \(u = 2x + 5y - 7 \) and \(v = 3x - 7y + 1 \).

The Jacobian is

\[
\begin{pmatrix}
u_x & u_y \\
v_z & v_y
\end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 3 & -7 \end{pmatrix} = -14 - 15 = -29. \quad \text{Thus } |dudv| = |-29|dxdy, \text{ so } \int_R 1 \, dA \text{ becomes}
\int \int_{u^2 + v^2 \leq 1} \frac{1}{29} \, dudv = \frac{1}{29} \pi 1^2 = \frac{\pi}{29}
\]