Annie's Survival Kit 3-Solutions - Math 324

1. (10 points) Set up a triple integral to find the volume of the region bounded by $z \leq x^{2}+y^{2}, x^{2}+y^{2} \leq 3$ and $z \geq 0$ using spherical coordinates. (Recall that volume is $\iiint_{R} 1 d V$.) Do not evaluate.
Answer: The region is within the cylinder $x^{2}+y^{2}=3$: below the paraboloid $z=x^{2}+y^{2}$ and above the plane $z=0$. Therefore, fixing ϕ and θ, a half-line starting at the origin hits the paraboloid first (where $\rho=\frac{\cos (\phi)}{\sin ^{2}(\phi)}$ since $z=x^{2}+y^{2}$ is $\rho \cos (\phi)=\rho^{2} \sin ^{2}(\phi)$ in spherical coordinates) and then the cylinder (where $\rho=\frac{\sqrt{3}}{\sin (\phi)}$ since $x^{2}+y^{2}=3$ is $\rho^{2} \sin ^{2}(\phi)=3$). The paraboloid and the cylinder intersect at $z=3$ in a circle of radius $\sqrt{3}$. Thus, $\phi_{\min }=\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)=\frac{\pi}{6}$, and since we are considering the region over $z=0, \phi_{\max }=\frac{\pi}{2}$. Finally, θ is from 0 to 2π since we have a full revolution around the z-axis. Therefore, the volume is

$$
\int_{0}^{2 \pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \int_{\frac{\cos (\phi)}{\sin ^{2}(\phi)}}^{\frac{\sqrt{3}}{\sin (\phi)}} 1 \rho^{2} \sin (\phi) d \rho d \phi d \theta
$$

2. (10 points) Switch $\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{2}^{3} z r^{4} d z d r d \theta+\int_{0}^{2 \pi} \int_{\sqrt{3}}^{2} \int_{2}^{\sqrt{4-r^{2}}+2} z r^{4} d z d r d \theta$ to spherical coordinates.

Answer: The region in the first triple integral is part of a solid cylinder of radius $\sqrt{3}$ centered around the z-axis of height 1 (with $2 \leq z \leq 3$). The region in the second triple integral is the part of the ball of radius two centered at $(0,0,2)$ (since $z=\sqrt{4-r^{2}}+2$) between $2 \leq z \leq 3$ and outside the aforementioned cylinder. Therefore, together, the region is the ball of radius two centered at $(0,0,2)$ cut with the planes $z=2$ and $z=3$.

With spherical coordinates, fixing ϕ and θ, the half-line always enters through the plane $z=2$ (where $\rho=\frac{2}{\cos (\phi)}$), but either comes out on the sphere (where $\rho=4 \cos (\phi)$ since $x^{2}+y^{2}+(z-2)^{2}=4$ which is equivalent to $x^{2}+y^{2}+z^{2}-4 z+4=4$ and thus $\rho^{2}-4 \rho \cos (\phi)=0$) or on the plane $z=3$ (where $\rho=\frac{3}{\cos (\phi)}$. We will thus need two triple integrals here too.
When $\phi=0$, we come out on $z=3$ and continue to do so until angle $\frac{\pi}{6}$. Then from $\frac{\pi}{6}$ to $\frac{\pi}{4}$, we come out on the sphere. Moreover, $0 \leq \theta \leq 2 \pi$ since we have a full revolution around the z-axis.
Finally, note that $z r^{4} d z d r d \theta=z r^{3} d V=\rho \cos (\phi) \rho^{3} \sin ^{3}(\phi) \rho^{2} \sin (\phi) d \rho d \phi d \theta$. Thus, we obtain

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{6}} \int_{\frac{2}{\cos (\phi)}}^{\frac{3}{\cos (\phi)}} \rho^{6} \cos (\phi) \sin ^{4}(\phi) d \rho d \phi d \theta+\int_{0}^{2 \pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \int_{\frac{2}{\cos (\phi)}}^{4 \cos (\phi)} \rho^{6} \cos (\phi) \sin ^{4}(\phi) d \rho d \phi d \theta
$$

3. (10 points) Find the area of the ellipse $(2 x+5 y-7)^{2}+(3 x-7 y+1)^{2} \leq 1$.

Answer: Let $u=2 x+5 y-7$ and $v=3 x-7 y+1$.
The Jacobian is $\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)=\left(\begin{array}{cc}2 & 5 \\ 3 & -7\end{array}\right)=-14-15=-29$. Thus $d u d v=|-29| d x d y$, so $\iint_{R} 1 d A$ becomes

$$
\iint_{u^{2}+v^{2} \leq 1} \frac{1}{29} d u d v=\frac{1}{29} \pi 1^{2}=\frac{\pi}{29}
$$

