Annie's Survival Kit 4 - Math 324

1. (10 points) Let $f(x, y)=x^{2}-y^{2}+4 x y$. Recall that $D_{\hat{\mathbf{u}}} f=\frac{d f}{\left.d s\right|_{\hat{\mathbf{u}}}}=\nabla f \cdot \hat{\mathbf{u}}$ and $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$.
(a) (3 points) In which direction does f decrease the fastest at $(2,1)$?
(b) (1 point) For which unit vector does f increase the fastest at $(2,1)$?
(c) (3 points) What is the rate of change of f at $(2,1)$ in the direction of the fastest decrease?
(d) (3 points) Find all points at which the direction of fastest change of f is the same as in (a).
2. (10 points) Let $u=x^{2}+y^{2}, v=\frac{y}{x}$ and $f=f(u, v)$.
(a) (7 points) Express $x f_{x}+y f_{y}$ in terms of f_{u}, f_{v}, u and v.
(b) (3 points) Find $x f_{x}+y f_{y}$ when $f(u, v)=u^{3}$.
3. (10 points) (a) (6 points) Find the tangent plane on $z=2 \sqrt{x^{2}+y^{2}}$ at the point $(1,-1, \sqrt{8})$.
(b) (2 points) Is $(6,-8,-5)$ a normal vector for the tangent plane at some point of this surface? (Hint: the length and direction of the normal are irrelevant; only its orientation matters.) If so, find all such points on the surface. Otherwise, explain why.
(c) (2 points) Is $(1,1,1)$ a normal vector for the tangent plane at some point of this surface? (Hint: the length and direction of the normal are irrelevant; only its orientation matters.) If so, find all such points on the surface. Otherwise, explain why.
