Annie's Survival Kit 6 - Math 324

1. (10 points) Use Green's theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle 2 y+\cos (x), 4 x-e^{y}\right\rangle$ and C is given by $\mathbf{r}(t)=\langle\cos (t)+2, \sin (t)+1\rangle$ for $t \in\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$.
2. (10 points) (a) (7 points) Express the area of the region bounded by $\mathbf{r}(t)=\langle\sin (2 t), \sin (t)\rangle$ for $0 \leq$ $t \leq \pi$ with an integral of the form $\int_{t_{0}}^{t_{1}} f(t) d t$. Do not evaluate. Hint: think about how $\sin (2 t)$ and $\sin (t)$ behave (which increases? decreases?) when $t \in\left[0, \frac{\pi}{4}\right]$, when $t \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, when $t \in\left[\frac{\pi}{2}, \frac{3 \pi}{4}\right]$ and when $t \in\left[\frac{3 \pi}{4}, \pi\right]$. Moreover, recall that the area of some region R is equal to $\iint_{R} 1 d A$. Finally, let D be some region and C its counterclockwise boundary, then Green's theorem states that, if \mathbf{F} is defined and differentiable everywhere on D, then $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D} \operatorname{curl}(\mathbf{F}) d A$ where $\operatorname{curl}(\mathbf{F})=N_{x}-M_{y}$ for $\mathbf{F}=\langle M, N\rangle$.
(b) (3 points) Using the following trigonometric identities, evaluate the integral you found in (a):

$$
\sin ^{3}(t)=\frac{3 \sin (t)-\sin (3 t)}{4}, \sin (2 t)=2 \sin (t) \cos (t), \cos (2 t)=\cos ^{2}(t)-\sin ^{2}(t)=1-2 \sin ^{2}(t)
$$

3. (10 points) Let $\mathbf{r}(t)=\langle 2 \cos (t), \sin (2 t)\rangle$ for $0 \leq t \leq \pi$. Express the mass of the region between $\mathbf{r}(t)$ and the x-axis with density equal to twice the distance from the y-axis with integrals of the form $\int_{t_{0}}^{t_{1}} f(t) d t$. Make sure $f(t)$ is free of absolute values. Do not evaluate.
