## Homework 3 - Math 409

In preparation of Quiz 3 on April 18

1. Use the algorithm seen in class to find a maximum size matching (and check that it is maximum) in the graph below.

2. Give an example of a graph $G$, a matching $M$, and a blossom $B$ for $M$ such that a maximum matching in $G / B$ does not lead to a maximum matching in $G$. Explain why this does not contradict the following theorem that we proved in class:
Let $B$ be a blossom with respect to $M$. Then $M$ is a maximum size matching in $G$ if and only if $M / B$ is a maximum size matching in $G / B$.
3. Let $G=(V, E)$ be any graph. Let $S \subseteq V$ be any set of vertices such that there exists a matching $M$ for which $S$ is a subset of the matched vertices in $M$. Prove that there exists a maximum matching $M^{*}$ for which all the vertices of $S$ are matched as well.
4. Let $G=(V, E)$ be any graph and let $U \subseteq V$ be a set of vertices such that there exists a matching $M$ of size $\frac{1}{2}(|U|+|V|-o(G \backslash U))$. Let $K_{1}, \ldots, K_{l}$ be the connected components of $G \backslash U$.
(a) If $M$ is any maximum matching, then $M$ contains exactly $\left\lfloor\frac{\left\lfloor K_{i} \mid\right.}{2}\right\rfloor$ edges from the subgraph of $G$ induced by the vertices of $K_{i}$.
(b) If $M$ is any maximum matching, then each vertex $u \in U$ is matched to a vertex $v$ in an odd component $K_{i}$ of $G \backslash U$.
(c) If $M$ is any maximum matching, then the only exposed vertices must be in odd components of $G \backslash U$.
5. Consider the Tutte-Berge formula $\max _{M}|M|=\min _{U \subseteq V} \frac{1}{2}(|U|+|V|-o(G \backslash U))$. Can there exist different sets $U \subseteq V$ that minimize the right handside? If so, find an example; otherwise, prove that the set $U$ that minimizes the right handside is unique.
