Homework 5-Math 409

In preparation of Quiz 5 on May 9

1. In class, in the example for technique 3 , we used the fact that $\operatorname{dim}(\operatorname{conv}(X))=n-1$ when

$$
X=\{(\sigma(1), \sigma(2), \ldots, \sigma(n)): \sigma \text { is a permutation of }\{1,2, \ldots, n\}\}
$$

Consider the family of permutations $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ given by $\sigma_{i}(1)=i, \sigma_{i}(i)=1$ and $\sigma_{i}(j)=j$ (if $j \notin\{1, i\})$ for any $i \in[n]$. Show that those n permutations are affinely independent and how this implies that $\operatorname{dim}(\operatorname{conv}(X))=n-1$.
2. A stable set S in a graph $G=(V, E)$ is a set of vertices such that there are no edges between any two vertices in S. Let P denote the convex hull of all the incidence vectors of the stable sets of G. Clearly, $x_{i}+x_{j} \leq 1$ is a valid inequality for P for every edge $(i, j) \in E$.
(a) Find a graph G for which P is not equal to

$$
\begin{gathered}
\left\{x \in \mathbb{R}^{|V|}: x_{i}+x_{j} \leq 1 \forall(i, j) \in E\right. \\
\left.x_{i} \geq 0 \forall i \in V\right\}
\end{gathered}
$$

(b) Show that if the graph G is bipartite, then P is equal to the previous linear system. Use technique number 2. Do it in two ways: with and without using total unimodularity.
3. For $0 \leq k \leq n-1$, let $v_{k} \in \mathbb{R}^{n}$ be a vector where the first k entries are 1 , and the following $n-k$ entries are -1 . Let $S=\left\{v_{0}, v_{1}, \ldots, v_{n-1},-v_{0},-v_{1}, \ldots,-v_{n-1}\right\}$. Let $P=\operatorname{conv}(S)$.
(a) Show that $\sum_{i=1}^{n} a_{i} x_{i} \leq 1$ and $\sum_{i=1}^{n} a_{i} x_{i} \geq-1$ are valid inequalities for P when the following conditions on the a_{i} 's hold:

1. $a_{i} \in\{-1,0,1\}$ for all $i \in[n]$,
2. $\sum_{i=1}^{n} a_{i}=1$, and
3. $0 \leq \sum_{i=1}^{j} a_{i} \leq 1$ for all $j \in[n-1]$.
(b) How many such inequalities are there?
(c) Consider any one of these inequalities: show that either v_{k} or $-v_{k}$ satisfies this inequality at equality for any k. Then show that all the tight $\pm v_{k}$'s are affinely independent. Finally show that the inequality is therefore a facet of P.
(d) Use technique 3 to show that the above inequalities completely define P.
4. Suppose we have n activities to choose from. Activity i starts at time t_{i} and ends at time u_{i}. If chosen, activity i gives us a profit of p_{i} units. Our goal is to choose a subset of the activities that do not overlap (though an activity ending at time t and another one starting at time t is ok) and such that the total profit of the selected activities is maximum. Hint: how does this relate to problem $2 ?$
(a) Defining x_{i} as a variable that represents whether activity i is selected $\left(x_{i}=1\right)$ or not ($x_{i}=0$), write an integer program of the form $\max \left\{p^{\top} x: A x \leq b, x \in\{0,1\}^{n}\right\}$ that would solve this problem.
(b) Show that, if no more than two activities overlap at any given time, the matrix A is totally unimodular, implying that one can solve this problem by solving the linear program $\max \left\{p^{\top} x: A x \leq\right.$ $\left.b, 0 \leq x_{i} \leq 1 \forall i\right\}$.
5. Given a bipartite graph $G=(A \cup B, E)$ and given an integer k, let S_{k} be the set of all incidence vectors of matchings with at most k edges. Let

$$
\begin{aligned}
P_{k}=\{x: & \sum_{j:(i, j) \in E} x_{i j} \leq 1 \forall i \in A \\
& \sum_{i:(i, j) \in E} x_{i j} \leq 1 \forall j \in B \\
& \sum_{i} \sum_{j} x_{i j} \leq k \\
& \left.x_{i j} \geq 0 \forall i \in A, j \in B\right\} .
\end{aligned}
$$

(a) Without $\sum_{i} \sum_{j} x_{i j} \leq k$, we have shown that the resulting matrix is totally unimodular. Is it still with this additional constraint?
(b) Show that $P_{k}=\operatorname{conv}\left(S_{k}\right)$.

