Homework 5 - Math 409

In preparation of Quiz 5 on May 9

1. In class, in the example for technique 3, we used the fact that $\dim(\operatorname{conv}(X)) = n - 1$ when

$$X = \{ (\sigma(1), \sigma(2), \dots, \sigma(n)) : \sigma \text{ is a permutation of } \{1, 2, \dots, n\} \}.$$

Consider the family of permutations $\{\sigma_1, \ldots, \sigma_n\}$ given by $\sigma_i(1) = i$, $\sigma_i(i) = 1$ and $\sigma_i(j) = j$ (if $j \notin \{1, i\}$) for any $i \in [n]$. Show that those *n* permutations are affinely independent and how this implies that dim(conv(X)) = n - 1.

- 2. A stable set S in a graph G = (V, E) is a set of vertices such that there are no edges between any two vertices in S. Let P denote the convex hull of all the incidence vectors of the stable sets of G. Clearly, $x_i + x_j \leq 1$ is a valid inequality for P for every edge $(i, j) \in E$.
 - (a) Find a graph G for which P is not equal to

$$\{x \in \mathbb{R}^{|V|} : x_i + x_j \le 1 \ \forall (i, j) \in E \\ x_i \ge 0 \ \forall i \in V\}$$

- (b) Show that if the graph G is bipartite, then P is equal to the previous linear system. Use technique number 2. Do it in two ways: with and without using total unimodularity.
- 3. For $0 \le k \le n-1$, let $v_k \in \mathbb{R}^n$ be a vector where the first k entries are 1, and the following n-k entries are -1. Let $S = \{v_0, v_1, \ldots, v_{n-1}, -v_0, -v_1, \ldots, -v_{n-1}\}$. Let $P = \operatorname{conv}(S)$.
 - (a) Show that $\sum_{i=1}^{n} a_i x_i \leq 1$ and $\sum_{i=1}^{n} a_i x_i \geq -1$ are valid inequalities for P when the following conditions on the a_i 's hold:
 - 1. $a_i \in \{-1, 0, 1\}$ for all $i \in [n]$,
 - 2. $\sum_{i=1}^{n} a_i = 1$, and

3.
$$0 \leq \sum_{i=1}^{j} a_i \leq 1$$
 for all $j \in [n-1]$.

- (b) How many such inequalities are there?
- (c) Consider any one of these inequalities: show that either v_k or $-v_k$ satisfies this inequality at equality for any k. Then show that all the tight $\pm v_k$'s are affinely independent. Finally show that the inequality is therefore a facet of P.
- (d) Use technique 3 to show that the above inequalities completely define P.
- 4. Suppose we have n activities to choose from. Activity i starts at time t_i and ends at time u_i . If chosen, activity i gives us a profit of p_i units. Our goal is to choose a subset of the activities that do not overlap (though an activity ending at time t and another one starting at time t is ok) and such that the total profit of the selected activities is maximum. **Hint:** how does this relate to problem 2?
 - (a) Defining x_i as a variable that represents whether activity *i* is selected $(x_i = 1)$ or not $(x_i = 0)$, write an integer program of the form $\max\{p^{\top}x : Ax \leq b, x \in \{0,1\}^n\}$ that would solve this problem.
 - (b) Show that, if no more than two activities overlap at any given time, the matrix A is totally unimodular, implying that one can solve this problem by solving the linear program $\max\{p^{\top}x : Ax \le b, 0 \le x_i \le 1 \ \forall i\}$.
- 5. Given a bipartite graph $G = (A \cup B, E)$ and given an integer k, let S_k be the set of all incidence vectors of matchings with at most k edges. Let

$$P_{k} = \{x : \sum_{j:(i,j)\in E} x_{ij} \leq 1 \ \forall i \in A$$
$$\sum_{i:(i,j)\in E} x_{ij} \leq 1 \ \forall j \in B$$
$$\sum_{i} \sum_{j} x_{ij} \leq k$$
$$x_{ij} \geq 0 \ \forall i \in A, j \in B\}.$$

- (a) Without $\sum_{i} \sum_{j} x_{ij} \leq k$, we have shown that the resulting matrix is totally unimodular. Is it still with this additional constraint?
- (b) Show that $P_k = \operatorname{conv}(S_k)$.