Homework 6 - Math 409

In preparation of Quiz 6 on May 16

1. Show whether or not $M=(E(M), \mathcal{F}(M))$ is a matroid when

- $E(M)=E$ for some graph $G=(V, E)$ and independent sets are matchings in G
- $E(M)=V$ for some graph $G=(V, E)$ and independent sets are vertex covers in G
- $E(M)=V$ for some graph $G=(V, E)$ and $\mathcal{F}(M)=\{S \subseteq V$: there exists a matching M covering $S\}$
- $E(M)=V$ for some graph $G=(V, E)$ and independent sets are stable sets of G
- $E(M)=E_{1} \cup \ldots \cup E_{l}$ where E_{1}, \ldots, E_{l} are disjoint, and $\mathcal{F}(M)=\left\{S \subseteq E:\left|S \cap E_{i}\right| \leq k_{i} \forall i=1, \ldots, l\right\}$ for some given constants k_{1}, \ldots, k_{l}
- $E(M)=E_{1} \cup \ldots \cup E_{l}$ where E_{1}, \ldots, E_{l} are not necessarily disjoint, and $\mathcal{F}(M)=\left\{S \subseteq E:\left|S \cap E_{i}\right| \leq\right.$ $\left.k_{i} \forall i=1, \ldots, l\right\}$ for some given constants k_{1}, \ldots, k_{l}

2. One class of matroids we discussed in class is the class of graphic matroids, i.e. matroids where the ground set is composed of the edges of a graph $G=(V, E)$ and the independent sets are the edge sets of G-forests. We also discussed linear matroids, i.e. matroids where the ground set is composed of the indices of the columns of a matrix A and where we say a set of these indices is independent if the corresponding columns are linearly independent.
(a) Show that any graphic matroid is also a linear matroid by constructing a matrix A where the rows are indexed by the vertices of V and the columns are indexed by the edges of E, and where a column vector indexed by (i, j) has 0 's in every row, except for a 1 in the i th or j th row and a -1 in the other.
(b) Show that any such matrix A is totally unimodular.
3. Let $M=(E, \mathcal{F})$ be a matroid. Let $k \in \mathbb{N}$ and define

$$
\mathcal{F}_{k}=\{X \in \mathcal{F}:|X| \leq k\}
$$

(a) Show that $M_{k}=\left(E, \mathcal{F}_{k}\right)$ is also a matroid.
(b) What is the rank function of M_{k} if M has rank function r ?
4. We are given n jobs that each take one unit of processing time. All jobs are available at time 0 , and job j has a profit of c_{j} and a deadline d_{j}. The profit for job j will only be earned if the job completes by time d_{j}. The problem is to find an ordering of the jobs that maximizes the total profit. First, prove that if a subset of the jobs can be completed on time, then they can also be completed on time if they are scheduled in the order of their deadlines. Now, let $E(M)=\{1,2, \ldots, n\}$ and let $\mathcal{F}(M)=\{S \subseteq E(M): S$ can be completed on time $\}$. Prove that M is a matroid and describe how to find an optimal ordering for the jobs.

