Homework 7 - Math 409

In preparation of Quiz 7 on May 23

1. Let P and Q be as defined in class for matroids. Show that $P \subseteq Q$ by showing that
2. each incidence vector of an independent set is in Q, and
3. that any convex combination of such vectors is also in Q.
4. Let $M=(E, \mathcal{F})$ be a matroid and let $E^{\prime}=\{e \in E:\{e\} \in \mathcal{F}\}$. Show that $\operatorname{dim}(P)=\left|E^{\prime}\right|$ (where E^{\prime} is the set of incidence vectors of independent sets and $P=\operatorname{conv}(X)$ like in class) and show that the description for Q (as defined in class) has the required number of linear independent equations.
5. Let $M=(E, \mathcal{F})$ be a matroid and let P be the corresponding matroid polytope. Show that two independent sets S_{1} and S_{2} are adjacent on P if and only if
6. either $S_{1} \subseteq S_{2}$ and $\left|S_{1}\right|+1=\left|S_{2}\right|$,
7. or $S_{2} \subseteq S_{1}$ and $\left|S_{2}\right|+1=\left|S_{1}\right|$,
8. or $\left|S_{2} \backslash S_{1}\right|=\left|S_{1} \backslash S_{2}\right|=1$ and $S_{1} \cup S_{2} \notin \mathcal{F}$.

Recall that two vertices are adjacent on P if and only if there exists an objective function c such that these two vertices are the only ones minimizing $c^{\top} x$ over P.

