
Chapter 5

Linear programming

One of the main tools in combinatorial optimization is linear programming. We want to quickly
review the key concepts and results. Since most statements and proofs are known from course 407,
from time to time we will be satisfied with informal proof sketches.

To clearify notation, the set of all real numbers will be denoted as R and the set of all integers
by Z. A function f is said to be real valued if its values are real numbers. For instance a vector c =
(c1, . . . , cn) ∈ Rn defines the linear function f : Rn → R such that x 7→ c·x := c1x1+c2x2+· · ·+cnxn.
Linear programs always have linear objective functions f(x) = c · x as above. Note that this is a
real valued function since c · x ∈ R.

A polyhedron P ⊆ Rn is the set of all points x ∈ Rn that satisfy a finite set of linear inequalities.
Mathematically,

P = {x ∈ Rn : Ax ≤ b}
for some matrix A ∈ Rm×n and a vector b ∈ Rm. A polyhedron can be presented in many different
ways such as P = {x ∈ Rn : Ax = b, x ≥ 0} or P = {x ∈ Rn : Ax ≥ b}. All these formulations
are equivalent. A polyhedron is called a polytope if it is bounded, i.e., can be enclosed in a ball of
finite radius.
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Definition 7. A set Q ⊆ Rn is convex if for any two points x and y in Q, the line segment joining
them is also in Q. Mathematically, for every pair of points x, y ∈ Q, the convex combination
λx+ (1− λ)y ∈ Q for every λ such that 0 ≤ λ ≤ 1.
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Q

x y
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Obviously, polyhedra are convex.
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Definition 8. A convex combination of a finite set of points v1, . . . , vt in Rn, is any vector of
the form

∑t
i=1 λivi such that 0 ≤ λi ≤ 1 for all i = 1, . . . , t and

∑t
i=1 λi = 1. The set of all convex

combinations of v1, . . . , vn is called the convex hull of v1, . . . , vn. We denote it by

conv{v1, . . . , vn} =
{ n∑

i=1

λivi | λ1 + . . .+ λn = 1;λi ≥ 0 ∀i = 1, . . . , n
}

v1

v2

v3

v4

v5

conv{v1, . . . , v5}

Theorem 28. Every polytope P is the convex hull of a finite number of points (and vice versa).

For a convex set P ⊆ Rn (such as polytopes or polyhedra) we call a point x ∈ P an extreme
point / vertex of P if there is no vector y ∈ Rn\{0} with both x+ y ∈ P and x− y ∈ P .

A linear program is the problem of maximizing or minimizing a linear function of the form∑n
i=1 cixi over all x = (x1, . . . , xn) in a polyhedron P . Mathematically, it is the problem

min
{ n∑

i=1

cixi | Ax ≤ b
}

for some matrix A and vector b (alternatively max instead of min).

5.1 Separation, Duality and Farkas Lemma

The number 1 key concept in linear optimization is duality. We want to motivate this with an
example. Consider the linear program

max{x1 + x2 | x1 + 2x2 ≤ 6, x1 ≤ 2, x1 − x2 ≤ 1}

(which is of the form max{cx | Ax ≤ b}). First, let us make the following observation: if we add
up non-negative multiples of feasible inequalities, then we obtain again an inequality that is valid
for each solution x of the LP. For example we can add up the inequalities in the following way:

x1 + 2x2 ≤ 6

x1 − x2 ≤ 1
x1 ≤ 2

x∗

c
x1 + x2 ≤ 13

3

P

2
3 · ( x1 +2x2 ≤ 6)
0 · ( x1 ≤ 2)
1
3 · ( x1 −x2 ≤ 1)

x1 +x2 ≤ 13
3 ≈ 4.33

Accidentially, the feasible inequality x1 + x2 ≤ 13
3 that we obtain has the objective function as

normal vector. Hence for each (x1, x2) ∈ P we must have cx ≤ 13
3 , which provides an upper

bound on the value of the LP. Inspecting the picture, we quickly see that optimum solution is
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x∗ = (2, 2) with objective function cx∗ = 4. Now, let’s generalize our observations. Consider the
following pair of linear programs

primal (P ) : max{cx | Ax ≤ b}
dual (D) : min{by | yA = c, y ≥ 0}

The dual LP is searching for inequalities (yA)x ≤ yb that are feasible for any primal solution x;
moreover it is looking for a feasible inequality so that the normal vector yA = c is the objective
function, so that yb is an upper bound on the primal LP. In other words: the dual LP is searching
for the best upper bound for the primal LP.

Theorem 29 (Weak duality Theorem). One has (P ) ≤ (D). More precisely if we have (x, y) with
Ax ≤ b, yA = c and y ≥ 0, then cx ≤ by.

Proof. One has

c︸︷︷︸
=yA

x = y︸︷︷︸
≥0

Ax︸︷︷︸
≤b

≤ yb.

In the remainder of this subsection we will show that always (P ) = (D), that means we can
always combine a feasible inequality that gives a tight upper bound. But first, some tools:

Theorem 30 (Hyperplane separation Theorem). Let P,Q ⊆ Rn be convex, closed and disjoint sets
with at least one of them bounded. Then there exists a hyperplane cx = β with

cx < β < cy ∀x ∈ P ∀y ∈ Q

Proof. Let (x∗, y∗) ∈ P × Q be the pair minimizing the distance ‖x∗ − y∗‖2 (this must exist for
the following reason: suppose that P is bounded; then P is compact. Then the distance function
d(x) := min{‖y − x‖2 | y ∈ Q} is well-defined and continuous, hence a minimum is attained on P ).
Then the hyperplane through 1

2(x
∗ + y∗) with normal vector c = y∗ − x∗ separates P and Q.

x∗ y∗

cx = β

P

Q

To see this, suppose for the sake of contradiction that Q has a point y with cy < cy∗. Then we can
write this point as y = x∗ + (1− λ∗)c+ λ∗d where d is a vector that is orthogonal to c. Since Q is
convex, also the point y(λ) = x∗ + (1− λ)c+ λd for 0 ≤ λ ≤ λ∗ is in Q.
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c

λ∗d

λ∗c

y(λ)

We want to argue that for λ > 0 small enough, the point y(λ) is closer to x∗ than y∗.

‖x∗−y(λ)‖22 = ‖(1−λ)c+λd‖22
c⊥d
= (1−λ)2‖c‖22+λ2‖d‖22 = ‖c‖22−2λ‖c‖22+λ2(‖c‖22+‖d‖22) < ‖c‖22

if we choose λ > 0 small enough since the coefficient in front of the linear λ term is negative.

This theorem is the finite dimensional version of the Hahn-Banach separation theorem from
functional analysis.

The separation theorem quickly provides us the very useful Farkas Lemma which is like a
duality theorem without objective function. The lemma tells us that out of two particular linear
systems, precisely one is going to be feasible.

Lemma 31 (Farkas Lemma). One has
(
∃x ≥ 0 : Ax = b

)
∨̇

(
∃y : yTA ≥ 0 and yb < 0

)
.

Proof. First let us check that it is impossible that such x, y exist at the same time since

0 ≤ yA︸︷︷︸
≥0

x︸︷︷︸
≥0

= y b︸︷︷︸
=Ax

< 0

For the other direction, assume that there is no x ≥ 0 with Ax = b. We need to show that there
is a proper y. Consider the cone K := {Ax | x ≥ 0} = {∑n

i=1 aixi | x1, . . . , xn ≥ 0} of valid right
hand sides, where a1, . . . , an are the columns of A. By assumption we know that b /∈ K.

K

0

a1

a2 a3

y

b

But K is a closed convex set, hence there is a hyperplane yT c = γ that separates K and {b}, i.e.

∀a ∈ K : yTa > γ > yT b

As 0 ∈ K we must have γ < 0. Moreover all non-negative multiples of columns are in K, that
means aixi ∈ K for all xi ≥ 0, thus yT (xi)ai > γ for each i ∈ [n], which implies that even yTai ≥ 0
for each i. This can be be written more compactly as yTA ≥ 0.

46



Theorem 32. One has (P ) = (D). More precisely, one has

max{cx : Ax ≤ b} = min{by : yA = c, y ≥ 0}

given that both systems have a solution.

Proof sketch. Suppose that (P ) is feasible. Let x∗ be an optimum solution1. Let a1, . . . , am be rows
of A and let I := {i | aTi x∗ = bi} be the tight inequalities.

x∗

ai1

ai2

C

cλ

aTi1x ≤ bi1

aTi2x ≤ bi2

b

b

(P )

Suppose for the sake of contradiction that c /∈ {∑i∈I aiyi | yi ≥ 0 ∀i ∈ I} =: C. Then there is a
direction λ ∈ Rn with cTλ > 0, aTi λ ≤ 0 ∀i ∈ I. Walking in direction λ improves the objective
function while we do not walk into the direction of constraints that are already tight. In other
words, there is a small enough ε > 0 so that x∗ + ελ is feasible for (P ) and has a better objective
function value — but x∗ was optimal. That is a contradiction!

Hence we know that indeed c ∈ C, hence there is a y ≥ 0 with yTA = cT and yi = 0 ∀i /∈ I
(that means we only use tight inequalities in y).

x∗

ai1

ai2

Cc

aTi1x ≤ bi1

aTi2x ≤ bi2

b

b

(P )

Now we can calculate, that the duality gap is 0:

yT b− cTx∗ = yT b− yTA︸︷︷︸
=c

x∗ = yT (b−Ax∗) =
m∑

i=1

yi︸︷︷︸
=0 if i/∈I

· (bi − aTi x
∗)︸ ︷︷ ︸

=0 if i∈I

= 0

Note that moreover, if (P ) is unbounded, then (D) is infeasible. If (D) is unbounded then (P )
is infeasible. On the other hand, it is possible that (P ) and (D) are both infeasible.

1That’s why this is only a proof sketch. For a polytope it is easy to argue that P is compact and hence there
must be an optimum solution. If P is unbounded, but the objective function value is bounded, then one needs more
technical arguments that we skip here.
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Theorem 33 (Complementary slackness). Let (x∗, y∗) be feasible solutions for

(P ) : max{cTx | Ax ≤ b} and (D) : min{by | yTA = c; y ≥ 0}

Then (x∗, y∗) are both optimal if and only if

(Aix
∗ = bi ∨ y∗i = 0) ∀i

Proof. We did already prove this in the last line of the duality theorem!

5.2 Algorithms for linear programming

In this section, we want to briefly discuss the different methods that are known to solve linear
programs.

5.2.1 The simplex method

The oldest and most popular one is the simplex method. Suppose the linear program is of the
form

max{cx | Ax ≤ b}.
We may assume that the underlying polyhedron P = {x ∈ Rn | Ax ≤ b} has vertices2. For a set
of row indices I ⊆ [m], let AI be the submatrix of A that contains all the rows with index in I. A
compact way of stating the simplex algorithm is as follows:

Simplex algorithm
Input: A ∈ Rm×n, b ∈ Rm, c ∈ Rn and a starting

basis I ∈
(
[m]
n

)

Output: opt. solution x attaining max{cx | Ax ≤ b}

(1) x = A−1
I bI

(2) IF y := cA−1
I ≥ 0 THEN RETURN x is optimal

(3) select j ∈ I and j′ /∈ I so that for I ′ := I\{j}∪{j′}
the following 3 conditions are satisfied

(i) rank(AI′) = n

(ii) the point x′ = A−1
I′ bI′ lies in P

(iii) cx′ ≥ cx

(4) UPDATE I := I ′ and GOTO (1)

P

x = A−1
I bI

x′ = A−1
I′ bI′

j

j′

c

one simplex step

I

I ′

The maintained set I of indices is usually called a basis and the maintained solution x is always a
vertex of P . In other words, the simplex method moves from one vertex to the next one so that the

2This is equivalent to saying that the ker(A) = {0}. A simple way to obtain this property is to substitute a
variable xi ∈ R by xi = x+

i − x−
i and adding the constraints x+

i , x
−
i ≥ 0 to the constraint system. Now the kernel of

the constraint matrix is empty.
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