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5.3.1 Span

The following definition is also motivated by the linear algebra setting.

Definition 5.1 Given a matroid M = (E, I) and given S ⊆ E, let

span(S) = {e ∈ E : r(S ∪ {e}) = r(S)}.

The span of a set is also called the closure. Observe that S ⊆ span(S). We claim that r(S) =
r(span(S)); in other words, if adding an element to S does not increase the rank, adding
many such elements also does not increase the rank. Indeed, take a maximal independent
subset of S, say J . If r(span(S)) > |J | then there exists e ∈ span(S)\J such that J + e ∈ I.
Thus r(S + e) ≥ r(J + e) = |J |+ 1 > |J | = r(S) contradicting the fact that e ∈ span(S).

Definition 5.2 A set S is said to be closed if S = span(S).

Exercise 5-9. Given a matroid M with rank function r and given an integer k ∈ N, what
is the rank function of the truncated matroid Mk (see Exercise 5-6 for a definition).

Exercise 5-10. What is the rank function of a laminar matroid, see exercise 5-7?

5.4 Matroid Polytope

Let
X = {χ(S) ∈ {0, 1}|E| : S ∈ I}

denote the incidence (or characteristic) vectors of all independent sets of a matroid M =
(E, I), and let the matroid polytope be defined as conv(X). In this section, we provide a
complete characterization of conv(X) in terms of linear inequalities. In addition, we illustrate
the different techniques proposed in the polyhedral chapter for proving a complete description
of a polytope.

Theorem 5.4 Let
P = {x ∈ R|E| : x(S) ≤ r(S) ∀S ⊆ E

xe ≥ 0 ∀e ∈ E}
where x(S) :=

∑
e∈S xe. Then conv(X) = P .

It is clear that conv(X) ⊆ P since X ⊆ P . The harder part is to show that P ⊆ conv(X).
In the next three subsections, we provide three different proofs based on the three techniques
to prove complete polyhedral descriptions.
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5.4.1 Algorithmic Proof

Here we provide an algorithmic proof based on the greedy algorithm. From conv(X) ⊆ P ,
we know that

max{cTx : x ∈ X} = max{cTx : x ∈ conv(X)} ≤ max{cTx : x(S) ≤ r(S) S ⊆ E
xe ≥ 0 e ∈ E}.

Using LP duality, we get that this last expression equals:

min{∑S r(S)yS :
∑

S:e∈S yS ≥ c(e) ∀e ∈ E
yS ≥ 0 S ⊆ E}.

Our goal now is, for any cost function c, to get an independent set S and a dual feasible
solution y such that cTχ(S) =

∑
S r(S)yS which proves that conv(X) = P .

Consider any cost function c. We know that the maximum cost independent set can be
obtained by the greedy algorithm. More precisely, it is the last set Sk returned by the greedy
algorithm when we consider only those elements up to eq where c(eq) ≥ 0 ≥ c(eq+1). We
need now to exhibit a dual solution of the same value as Sk. There are exponentially many
variables in the dual, but this is not a problem. In fact, we will set most of them to 0.

For any index j ≤ k, we have Sj = {s1, s2, · · · , sj}, and we define Uj to be all elements in
our ordering up to and excluding sj+1, i.e. Uj = {e1, e2, · · · , el} where el+1 = sj+1. In other
words, Uj is all the elements in the ordering just before sj+1. One important property of Uj

is that
r(Uj) = r(Sj) = j.

Indeed, by independence r(Sj) = |Sj| = j, and by (R2), r(Uj) ≥ r(Sj). If r(Uj) > r(Sj),
there would be an element say ep ∈ Uj \Sj such that Sj∪{ep} ∈ I. But the greedy algorithm
would have selected that element (by (I1)) contradicting the fact that ep ∈ Uj \ Sj.

Set the non-zero entries of yS in the following way. For j = 1, · · · , k, let

yUj
= c(sj)− c(sj+1),

where it is understood that c(sk+1) = 0. By the ordering of the c(·), we have that yS ≥ 0 for
all S. In addition, for any e ∈ E, we have that

∑

S:e∈S
yS =

k∑

j=t

yUj
= c(st) ≥ c(e),

where t is the least index such that e ∈ Ut (implying that e does not come before st in the
ordering). This shows that y is a feasible solution to the dual. Moreover, its dual value is:

∑

S

r(S)yS =
k∑

j=1

r(Uj)yUj
=

k∑

j=1

j(c(sj)−c(sj+1)) =
k∑

j=1

(j−(j−1))c(sj) =
k∑

j=1

c(sj) = c(Sk).

This shows that the dual solution has the same value as the independent set output by the
greedy algorithm, and this is true for all cost functions. This completes the algorithmic
proof.
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5.4.2 Vertex Proof

Here we will focus on any vertex x of

P = {x ∈ R|E| : x(S) ≤ r(S) ∀S ⊆ E
xe ≥ 0 ∀e ∈ E}

and show that x is an integral vector. Since x({e}) ≤ r({e}) ≤ 1, we get that x ∈ {0, 1}|E|
and thus it is the incidence vector of an independent set.

Given any x ∈ P , consider the tight sets S, i.e. those sets for which x(S) = r(S). The
next lemma shows that these tight sets are closed under taking intersections or unions. This
lemma is really central, and follows from submodularity.

Lemma 5.5 Let x ∈ P . Let

F = {S ⊆ E : x(S) = r(S)}.

Then
S ∈ F , T ∈ F ⇒ S ∩ T ∈ F , S ∪ T ∈ F .

Observe that the lemma applies even if S and T are disjoint. In that case, it says that ∅ ∈ F
(which is always the case as x(∅) = 0 = r(∅)) and S ∪ T ∈ F .
Proof: The fact that S, T ∈ F means that:

r(S) + r(T ) = x(S) + x(T ). (2)

Since x(S) =
∑

e∈S xe, we have that

x(S) + x(T ) = x(S ∩ T ) + x(S ∪ T ), (3)

i.e. that the function x(·) is modular (both x and −x are submodular). Since x ∈ P , we know
that x(S ∩ T ) ≤ r(S ∩ T ) (this is true even if S ∩ T = ∅) and similarly x(S ∪ T ) ≤ r(S ∪ T );
this implies that

x(S ∩ T ) + x(S ∪ T ) ≤ r(S∩) + r(S ∪ T ). (4)

By submodularity, we have that

r(S ∩ T ) + r(S ∪ T ) ≤ r(S) + r(T ). (5)

Combining (2)–(5), we get

r(S) + r(T ) = x(S) + x(T ) = x(S ∩ T ) + x(S ∪ T ) ≤ r(S ∩ T ) + r(S ∪ T ) ≤ r(S) + r(T ),

and therefore we have equality throughout. This implies that x(S ∩ T ) = r(S ∩ T ) and
x(S ∪ T ) = r(S ∪ T ), i.e. S ∩ T and S ∪ T in F . 4

To prove that any vertex or extreme point of P is integral, we first characterize any face
of P . A chain C is a family of sets such that for all S, T ∈ C we have that either S ⊆ T or
T ⊆ S (or both if S = T ).
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Theorem 5.6 Consider any face F of P . Then there exists a chain C and a subset J ⊆ E
such that:

F = {x ∈ R|E| : x(S) ≤ r(S) ∀S ⊆ E
x(C) = r(C) ∀C ∈ C
xe ≥ 0 ∀e ∈ E \ J
xe = 0 ∀e ∈ J.}

Proof: By Theorem 3.5 of the polyhedral notes, we know that any face is characterized
by setting some of the inequalities of P by equalities. In particular, F can be expressed as

F = {x ∈ R|E| : x(S) ≤ r(S) ∀S ⊆ E
x(C) = r(C) ∀C ∈ F
xe ≥ 0 ∀e ∈ E \ J
xe = 0 ∀e ∈ J.}

where J = {e : xe = 0 for all x ∈ F} and F = {S : x(S) = r(S) for all x ∈ F}. To prove the
theorem, we need to argue that the system of equations:

x(C) = r(C) ∀C ∈ F
can be replaced by an equivalent (sub)system in which F is replaced by a chain C. To be
equivalent, we need that

span(F) = span(C)
where by span(L) we mean

span(L) := span{χ(C) : C ∈ L}.
Let C be a maximal subchain of F , i.e. C ⊆ F , C is a chain and for all S ∈ F \ C, there

exists C ∈ C such that S 6⊆ C and C 6⊆ S. We claim that span(C) = span(F).
Suppose not, i.e. H 6= span(F) where H := span(C). This means that there exists

S ∈ F \ C such that χ(S) /∈ H but S cannot be added to C without destroying the chain
structure. In other words, for any such S, the set of ’chain violations’

V (S) := {C ∈ C : C 6⊆ S and S 6⊆ C}
is non-empty. Among all such sets S, choose one for which |V (S)| is as small as possible
(|V (S)| cannot be 0 since we are assuming that V (S) 6= ∅ for all possible S). Now fix some
set C ∈ V (S). By Lemma 5.5, we know that both C ∩ S ∈ F and C ∪ S ∈ F . Observe that
there is a linear dependence between χ(C), χ(S), χ(C ∪ T ), χ(C ∩ T ):

χ(C) + χ(S) = χ(C ∪ S) + χ(C ∩ S).

This means that, since χ(C) ∈ H and χ(S) /∈ H, we must have that either χ(C ∪ S) /∈ H
or χ(C ∩ S) /∈ H (otherwise χ(S) would be in H). Say that χ(B) /∈ H where B is either
C ∪ S or C ∩ S. This is a contradiction since |V (B)| < |V (S)|, contradicting our choice of
S. Indeed, one can see that V (B) ⊂ V (S) and C ∈ V (S) \ V (B). 4

As a corollary, we can also obtain a similar property for an extreme point, starting from
Theorem 3.6.
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Corollary 5.7 Let x be any extreme point of P . Then there exists a chain C and a subset
J ⊆ E such that x is the unique solution to:

x(C) = r(C) ∀C ∈ C
xe = 0 ∀e ∈ J.

From this corollary, the integrality of every extreme point follows easily. Indeed, if the
chain given in the corollary consists of C1 ⊂ C2 ⊂ Cp the the system reduces to

x(Ci \ Ci−1) = r(Ci)− r(Ci−1) i = 1, · · · , p
xe = 0 ∀e ∈ J,

where C0 = ∅. For this to have a unique solution, we’d better have |Ci \ Ci−1 \ J | ≤ 1 for
all i and the values for the resulting xe’s will be integral. Since 0 ≤ xe ≤ r({e}) ≤ 1, we
have that x is a 0 − 1 vector and thus x = χ(S) for some set S. As |S| ≤ r(S) ≤ |S|, we
have |S| = r(S) and thus S ∈ I and therefore x is the incidence vector of an independent
set. This completes the proof.

5.4.3 Facet Proof

Our last proof of Theorem 5.4 focuses on the facets of conv(X).
First we need to argue that we are missing any equalities. Let’s focus on the (interesting)

case in which any singleton set is independent: {e} ∈ I for every e ∈ E. In that case
dim(conv(X)) = |E| since we can exhibit |E| + 1 affinely independent points in X: the
0 vector and all unit vectors χ({e}) for e ∈ E. Thus we do not need any equalities. See
exercise 5-11 if we are not assuming that every singleton set is independent.

Now consider any facet F of conv(X). This facet is induced by a valid inequality αTx ≤ β
where β = max{∑e∈I αe : I ∈ I}. Let

O = {I ∈ I :
∑

e∈I
αe = β},

i.e. O is the set of all independent sets whose incidence vectors belong to the face. We’ll
show that there exists an inequality in our description of P which is satisfied at equality by
the incidence vectors of all sets I ∈ O.

We consider two cases. If there exists e ∈ M such that αe < 0 then I ∈ O implies that
e /∈ I, implying that our face F is included in the face induced by xe ≥ 0 (which is in our
description of P ).

For the other case, we assume that for all e ∈ E, we have αe ≥ 0. We can further assume
that αmax := maxe∈E αe > 0 since otherwise F is trivial. Now, define S as

S = {e ∈ E : αe = αmax}.

Claim 5.8 For any I ∈ O, we have |I ∩ S| = r(S).
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This means that the face F is contained in the face induced by the inequality x(S) ≤ r(S)
and therefore we have in our description of P one inequality inducing each facet of conv(X).
Thus we have a complete description of conv(X).

To prove the claim, suppose that |I ∩ S| < r(S). Thus I ∩ S can be extended to an
independent set X ∈ I where X ⊆ S and |X| > |I ∩ S|. Let e ∈ X \ (I ∩ S); observe
that e ∈ S by our choice of X. Since αe > 0 we have that I + e /∈ I, thus there is a
circuit C ⊆ I + e. By the unique circuit property (see Theorem 5.1), for any f ∈ C we have
I + e− f ∈ I. But C \ S 6= ∅ since (I ∩ S) + e ∈ I, and thus we can choose f ∈ C \ S. The
cost of I + e− f satisfies:

c(I + e− f) = c(I) + c(e)− c(f) > c(I),

contradicting the definition of O.

5.5 Facets?

Now that we have a description of the matroid polytope in terms of linear inequalities, one
may wonder which of these (exponentially many) inequalities define facets of conv(X).

For simplicity, let’s assume that r({e}) = 1 for all e ∈ E (e belongs to some independent
set). Then, every nonnegativity constraint defines a facet of P = conv(X). Indeed, the 0
vector and all unit vectors except χ({e}) constitute |E| affinely independent points satisfying
xe = 0. This mean that the corresponding face has dimension at least |E| − 1 and since the
dimension of P itself is |E|, the face is a facet.

We now consider the constraint x(S) ≤ r(S) for some set S ⊆ E. If S is not closed (see
Definition 5.2) then x(S) ≤ r(S) definitely does not define a facet of P = conv(X) since it
is implied by the constraints x(span(S)) ≤ r(S) and xe ≥ 0 for e ∈ span(S) \ S.

Another situation in which x(S) ≤ r(S) does not define a facet is if S can be expressed
as the disjoint union of U 6= ∅ and S \ U 6= ∅ and r(U) + r(S \ U) = r(S). In this case, the
inequality for S is implied by those for U and for S \ U .

Definition 5.3 S is said to be inseparable if there is no U with ∅ 6= U ⊂ S such that
r(S) = r(U) + r(S \ U).

From what we have just argued, a necessary condition for x(S) ≤ r(S) to define a facet
of P = conv(X) is that S is closed and inseparable. This can be shown to be sufficient as
well, although the proof is omitted.

As an example, consider a partition matroid with M = (E, I) where

I = {X ⊆ E : |X ∩ Ei| ≤ ki for all i = 1, · · · , l},

for disjoint Ei’s. Assume that ki ≥ 1 for all i. The rank function for this matroid is:

r(S) =
l∑

i=1

min(ki, |S ∩ Ei|).


