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Exercise 5-6. Let M = (E,Z) be a matroid. Let k € N and define
Iy ={X €Z:|X| <k}
Show that Mj, = (E,Zy) is also a matroid. This is known as a truncated matroid.

Exercise 5-7. A family F of sets is said to be laminar if, for any two sets A, B € F, we
have that either (i) A C B, or (ii) B C A or (iii) AN B = (). Suppose that we have a laminar
family F of subsets of E and an integer k(A) for every set A € F. Show that (E,Z) defines
a matroid (a laminar matroid) where:

I={XCE:|XNA| <Ek(A) forall Ae F}.

5.2 Matroid Optimization

Given a matroid M = (E,Z) and a cost function ¢ : E — R, we are interested in finding
an independent set .S of M of maximum total cost ¢(S) =) . c(e). This is a fundamental
problem.

If all ¢(e) > 0, the problem is equivalent to finding a maximum cost base in the matroid.
If ¢(e) < 0 for some element e then, because of (I;), e will not be contained in any optimum
solution, and thus we could eliminate such an element from the ground set. In the special case
of a graphic matroid M (G) defined on a connected graph G, the problem is thus equivalent
to the maximum spanning tree problem which can be solved by a simple greedy algorithm.
This is actually the case for any matroid and this is the topic of this section.

The greedy algorithm we describe actually returns, for every k, a set .S, which maximizes
¢(S) over all independent sets of size k. The overall optimum can thus simply be obtained
by outputting the best of these. The greedy algorithm is the following:

> Sort the elements (and renumber them) such that c(e;) > c(ez) > -+ > c(eg))
> Sy =0, k=0
> For j =1 to |F]
> if S +e; € T then
> k< k+1
> Sk — Sk;—l + €;
D> Sg < €
> Output Si, Sa, -+, Sk

Theorem 5.2 For any matroid M = (E,T), the greedy algorithm above finds, for every k,
an independent set Sy of mazimum cost among all independent sets of size k.

Proof: Suppose not. Let Sy = {s1, 82, , sk} with ¢(s1) > ¢(s2) > -+ > ¢(si), and
suppose T}, has greater cost (¢(Ty) > ¢(Sk)) where Ty, = {t1,t9,- -+ ,tx} with c(t1) > c(tz2) >
-+ > ¢(tg). Let p be the first index such that c(t,) > c(s,). Let A = {t1,t2,--- ,1,} and
B = {s1,82,-+,Sp—1}. Since |A| > |B], there exists t; ¢ B such that B +¢; € Z. Since
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c(t;) > c(t,) > c(sp), t; should have been selected when it was considered. To be more
precise and detailed, when ¢; was considered, the greedy algorithm checked whether ¢; could
be added to the current set at the time, say S. But since S C B, adding ¢; to S should have
resulted in an independent set (by (/;)) since its addition to B results in an independent set.
This gives the contradiction and completes the proof. A

Observe that, as long as ¢(sg) > 0, we have that ¢(Sg) > ¢(Skg—1). Therefore, to find a
maximum cost set over all independent sets, we can simply replace the loop

> For j =1 to |F]
by

> For j=1togq
where ¢ is such that c(e;) > 0 > c(e,41), and output the last Sj.

For the maximum cost spanning tree problem, the greedy algorithm reduces to Kruskal’s
algorithm which considers the edges in non-increasing cost and add an edge to the previously
selected edges if it does not form a cycle.

One can show that the greedy algorithm actually characterizes matroids. If M is an
independence system, i.e. it satisfies (1), then M is a matroid if and only if the greedy
algorithm finds a maximum cost set of size k for every k and every cost function.

Exercise 5-8. We are given n jobs that each take one unit of processing time. All jobs
are available at time 0, and job j has a profit of ¢; and a deadline d;. The profit for job
J will only be earned if the job completes by time d;. The problem is to find an ordering
of the jobs that maximizes the total profit. First, prove that if a subset of the jobs can be
completed on time, then they can also be completed on time if they are scheduled in the
order of their deadlines. Now, let E(M) = {1,2,--- ,n} and let Z(M) = {J C E(M) : J
can be completed on time }. Prove that M is a matroid and describe how to find an optimal
ordering for the jobs.

5.3 Rank Function of a Matroid

Similarly to the notion of rank for matrices, one can define a rank function for any matroid.
The rank function of M, denoted by either r(-) or ry(-), is defined by:

ra i 28 = Ny (X) =max{|Y|: Y C X,Y € T}.
Here are a few specific rank functions:

e For a linear matroid, the rank of X is precisely the rank in the linear algebra sense of
the matrix Ay corresponding to the columns of A in X.

e For a partition matroid M = (E,Z) where

I={XCE:|XNE|<kjfori=1,--- I}
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(the E;’s forming a partition of E) its rank function is given by:

r(X) =) min(|E; N X|, k).

=1

e For a graphic matroid M(G) defined on graph G = (V, E), the rank function is equal
to:
rue)(F) =n—r(V, F),

where n = |V| and k(V, F') denotes the number of connected components (including
isolated vertices) of the graph with edges F'.

The rank function of any matroid M = (E,Z) has the following properties:
(R1) 0 <r(X) <|X| and is integer valued for all X C £

(Re) X CY =r(X) <r),
(R3) r(X)+r(Y)>r(XNY)+r(XUY).

The last property is called submodularity and is a key concept in combinatorial optimization.
It is clear that, as defined, any rank function satisfies (R;) and (Ry). Showing that the rank
function satisfies submodularity needs a proof.

Lemma 5.3 The rank function of any matroid is submodular.

Proof:  Consider any two sets X, Y C E. Let J be a maximal independent subset of XNY;
thus, |J| = r(XNY). By (I2), J can be extended to a maximal (thus maximum) independent
subset of X, call it Jx. We have that J C Jx C X and |Jx| = r(X). Furthermore, by
maximality of J within X NY, we know

Now extend Jx to a maximal independent set Jxy of X UY. Thus, |Jxy|=r(XUY).
In order to be able to prove that

r(X)+rY)>r(XNY)+r(XUY)

or equivalently
x| +r(Y) = I+ |Jxv],

we need to show that r(Y) > |J| + |Jxy| — |Jx|.- Observe that Jxy NY is independent (by
(11)) and a subset of Y, and thus r(Y) > |Jxy NY|. Observe now that

Ixy NY =Jxy \ (Ux \Y) = Jxyv \ (Jx \ J),

the first equality following from the fact that Jx is a maximal independent subset of X and
the second equality by (1). Therefore,

r(Y) > [Jxy NY| = [Jxy \ (Jx \ J)| = |[Ixy| = [Ix] + |J],

proving the lemma. A



