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Exercise 5-6. Let M = (E, I) be a matroid. Let k ∈ N and define

Ik = {X ∈ I : |X| ≤ k}.

Show that Mk = (E, Ik) is also a matroid. This is known as a truncated matroid.

Exercise 5-7. A family F of sets is said to be laminar if, for any two sets A,B ∈ F , we
have that either (i) A ⊆ B, or (ii) B ⊆ A or (iii) A∩B = ∅. Suppose that we have a laminar
family F of subsets of E and an integer k(A) for every set A ∈ F . Show that (E, I) defines
a matroid (a laminar matroid) where:

I = {X ⊆ E : |X ∩ A| ≤ k(A) for all A ∈ F}.

5.2 Matroid Optimization

Given a matroid M = (E, I) and a cost function c : E → R, we are interested in finding
an independent set S of M of maximum total cost c(S) =

∑
e∈S c(e). This is a fundamental

problem.
If all c(e) ≥ 0, the problem is equivalent to finding a maximum cost base in the matroid.

If c(e) < 0 for some element e then, because of (I1), e will not be contained in any optimum
solution, and thus we could eliminate such an element from the ground set. In the special case
of a graphic matroid M(G) defined on a connected graph G, the problem is thus equivalent
to the maximum spanning tree problem which can be solved by a simple greedy algorithm.
This is actually the case for any matroid and this is the topic of this section.

The greedy algorithm we describe actually returns, for every k, a set Sk which maximizes
c(S) over all independent sets of size k. The overall optimum can thus simply be obtained
by outputting the best of these. The greedy algorithm is the following:

. Sort the elements (and renumber them) such that c(e1) ≥ c(e2) ≥ · · · ≥ c(e|E|)

. S0 = ∅, k=0

. For j = 1 to |E|
. if Sk + ej ∈ I then

. k ← k + 1

. Sk ← Sk−1 + ej

. sk ← ej
. Output S1, S2, · · · , Sk

Theorem 5.2 For any matroid M = (E, I), the greedy algorithm above finds, for every k,
an independent set Sk of maximum cost among all independent sets of size k.

Proof: Suppose not. Let Sk = {s1, s2, · · · , sk} with c(s1) ≥ c(s2) ≥ · · · ≥ c(sk), and
suppose Tk has greater cost (c(Tk) > c(Sk)) where Tk = {t1, t2, · · · , tk} with c(t1) ≥ c(t2) ≥
· · · ≥ c(tk). Let p be the first index such that c(tp) > c(sp). Let A = {t1, t2, · · · , tp} and
B = {s1, s2, · · · , sp−1}. Since |A| > |B|, there exists ti /∈ B such that B + ti ∈ I. Since
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c(ti) ≥ c(tp) > c(sp), ti should have been selected when it was considered. To be more
precise and detailed, when ti was considered, the greedy algorithm checked whether ti could
be added to the current set at the time, say S. But since S ⊆ B, adding ti to S should have
resulted in an independent set (by (I1)) since its addition to B results in an independent set.
This gives the contradiction and completes the proof. 4

Observe that, as long as c(sk) ≥ 0, we have that c(Sk) ≥ c(Sk−1). Therefore, to find a
maximum cost set over all independent sets, we can simply replace the loop

. For j = 1 to |E|
by

. For j = 1 to q
where q is such that c(eq) ≥ 0 > c(eq+1), and output the last Sk.

For the maximum cost spanning tree problem, the greedy algorithm reduces to Kruskal’s
algorithm which considers the edges in non-increasing cost and add an edge to the previously
selected edges if it does not form a cycle.

One can show that the greedy algorithm actually characterizes matroids. If M is an
independence system, i.e. it satisfies (I1), then M is a matroid if and only if the greedy
algorithm finds a maximum cost set of size k for every k and every cost function.

Exercise 5-8. We are given n jobs that each take one unit of processing time. All jobs
are available at time 0, and job j has a profit of cj and a deadline dj. The profit for job
j will only be earned if the job completes by time dj. The problem is to find an ordering
of the jobs that maximizes the total profit. First, prove that if a subset of the jobs can be
completed on time, then they can also be completed on time if they are scheduled in the
order of their deadlines. Now, let E(M) = {1, 2, · · · , n} and let I(M) = {J ⊆ E(M) : J
can be completed on time }. Prove that M is a matroid and describe how to find an optimal
ordering for the jobs.

5.3 Rank Function of a Matroid

Similarly to the notion of rank for matrices, one can define a rank function for any matroid.
The rank function of M , denoted by either r(·) or rM(·), is defined by:

rM : 2E → N : rM(X) = max{|Y | : Y ⊆ X, Y ∈ I}.

Here are a few specific rank functions:

• For a linear matroid, the rank of X is precisely the rank in the linear algebra sense of
the matrix AX corresponding to the columns of A in X.

• For a partition matroid M = (E, I) where

I = {X ⊆ E : |X ∩ Ei| ≤ ki for i = 1, · · · , l}



5. Matroid optimization April 8, 2015 7

(the Ei’s forming a partition of E) its rank function is given by:

r(X) =
l∑

i=1

min(|Ei ∩X|, ki).

• For a graphic matroid M(G) defined on graph G = (V,E), the rank function is equal
to:

rM(G)(F ) = n− κ(V, F ),

where n = |V | and κ(V, F ) denotes the number of connected components (including
isolated vertices) of the graph with edges F .

The rank function of any matroid M = (E, I) has the following properties:

(R1) 0 ≤ r(X) ≤ |X| and is integer valued for all X ⊆ E

(R2) X ⊆ Y ⇒ r(X) ≤ r(Y ),

(R3) r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ).

The last property is called submodularity and is a key concept in combinatorial optimization.
It is clear that, as defined, any rank function satisfies (R1) and (R2). Showing that the rank
function satisfies submodularity needs a proof.

Lemma 5.3 The rank function of any matroid is submodular.

Proof: Consider any two setsX, Y ⊆ E. Let J be a maximal independent subset ofX∩Y ;
thus, |J | = r(X∩Y ). By (I2), J can be extended to a maximal (thus maximum) independent
subset of X, call it JX . We have that J ⊆ JX ⊆ X and |JX | = r(X). Furthermore, by
maximality of J within X ∩ Y , we know

JX \ Y = JX \ J. (1)

Now extend JX to a maximal independent set JXY of X ∪ Y . Thus, |JXY | = r(X ∪ Y ).
In order to be able to prove that

r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y )

or equivalently
|JX |+ r(Y ) ≥ |J |+ |JXY |,

we need to show that r(Y ) ≥ |J |+ |JXY | − |JX |. Observe that JXY ∩ Y is independent (by
(I1)) and a subset of Y , and thus r(Y ) ≥ |JXY ∩ Y |. Observe now that

JXY ∩ Y = JXY \ (JX \ Y ) = JXY \ (JX \ J),

the first equality following from the fact that JX is a maximal independent subset of X and
the second equality by (1). Therefore,

r(Y ) ≥ |JXY ∩ Y | = |JXY \ (JX \ J)| = |JXY | − |JX |+ |J |,
proving the lemma. 4


