EXAMPLE OF TECHNIQUE 2

Given X =(matchings, paths, trees, cycles, etc.), let P = conv(X). Let @ = {x :
Az < b}. We want to show that P = Q. Showing that P C @ is usually easy. The
other way can be tricky. We saw three different techniques to do so. In the second
technique,

a) we first show that @ is bounded,
b) and then we show that every vertex of @ is in X
We illustrate this technique with an example here.

Let
X = (perfect matchings in some bipartite graph G = (V, E)),
and
P = conv(X).

Let

i:(i,5)EE

Z Tij = 1 VZ,
J:(j)EE

a) We first need to show that @ is bounded. This follows because 0 < x;; < 1
for all (i,) € E, which implies that Q C [0, 1]/"!.

b) Now, let 2* be a vertex of Q. Either 2* € {0,1}/F! or there exists (i,j) € E
such that 0 <z7; < 1.

Good case: If z* € {0,1}|E‘, then since z* € @, it satisfies the equations
> x;; = 1, and so the components z;; = 1 correspond to the edges of a perfect
matching, meaning that 2* € conv(X).

Bad case: Otherwise, if z* ¢ {0,1}/Z!) then there exists (,5) € F such that
0<azf; <1 Let B* = {(i,j) € F:0 < z}; < 1}. First note that no vertex v € V
can be adjacent to exactly one edge, say (v, w), of E*. Indeed, 3 ., ,)ep\ 5+ Tuv =
z € {0,1}, and 80 }°, . v)er Tuv = Tow + Dy (uw)e B\ B+ Tuv = Tow + z which is
equal to 1 since z* € Q. If 2 = 0, then x,, = 1, and so (v,w) & E*. If z = 1,
then x,,, = 0, and so (v,w) € E*. Therefore, no vertex v € V can be adjacent to
exactly one edge of E*.

This implies that every vertex of V is adjacent to 0 edges of E* or at least two
edges of E*. This further implies that there exists a cycle in E*, and since G is
bipartite, it must be an even cycle. Call such a cycle C'. Color every other edge
in the cycle red, and denote this set of red edges by Er, and color the remaining
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2 EXAMPLE OF TECHNIQUE 2

edges in the cycle blue, and denote this set of blue edges by Eg. Note that ErUEp
yields all the edges of C.

Let € = min;, g)ec{ﬂﬁ mfj} Create two new vectors, () and 2, such that

1]7

#f  if(i,5) € E\C #f i (i,4) € E\C
xS) =4q zj;+e if(i,j) € Er  and xz(f) =4 zf;—e€ if(i,j) € Er
zf; —e if (i,j) € Ep xi;+e if (4,5) € Ep

First observe that () and 23 are both in Q. Indeed, by the definition of

€, 0 < xgjl) < land 0 < mg) < 1. Moreover, for any vertex v which is not

on the cycle, }°, v)eE o) = = > w(uwer Tuw = 1 for i = 1 or 2. For a ver-
tex v on the cycle, v is exactly adjacent to one blue edge and one red edge, so
Zu:(w))eE ngg = Zu:(u,v)EE xr, te—e= Zu:(w))eE xt, =1for i =1 or 2. Thus
™M) and ) are both in Q.

Then, also observe that z* = 1(z® + 2(?). Indeed, for e € E\C, we get
z} = 3(a}+ak). For e € Eg, we get z; = L(2} 4+ €+ 2} — €); similarly, for e € Ep,
we get 2 = L(z} — e+ 2} +¢€). Thus z* = $(z) +2?).

This means that the vertex z* is a convex combination of two other points in
@, namely () and z(? | which is impossible. One way to see it is impossible is as
follows.

Consider any face F' that contains z*. We’ll show that any such face also con-
tains (1) and 2.

We know there exists some valid inequality for @Q, say a'x < b, that induces
F. Since x* is on F, we have that a'2* = b. We can rewrite this equation as

ZeEE - b

Since a "z < bis a valid inequality for Q, we know that a "z < band a’z(® <b
since (1) and ) are in Q. Observe that

aTe® =3 aa)

ecE
S s Y sl Yl
e€ E\C e€FER ecEp
= Z aeTh + Z ac(x; +€) + Z ae(x) —€)
e€E\C ecER e€cEp
:Zaex:—i— Z ac€ — Z ace
ecE eeER ecEp

where y =3 . Ge€ — D . Qe€.
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Similarly,
a'z? = Z aexéz)

ecE

= Z aez® + Z aez® + Z ez
e€EE\C ecERr ecEp

= > aeri+ > ac(zi—e)+ Y ac(al+e)
ec E\C e€ERr ecEp

S IR SPUED o
eelE ecER ecEp

Since both b+y < b and b —y < b (since a' 2 < b is a valid inequality for Q),
this implies that y = 0, and thus that o'z = b and a"z(® = b, i.e., that both
M and z® are on F as well.

Recall that this is true for any face F' that contains z*. In particular, since x*
is a vertex (recall that a vertex is a face) of @, it is true for that face, i.e. this
vertex of dimension 0 contains at least three different points: z*, (1), (). Thus,
it cannot have dimension 0 and x* cannot be a vertex.

Thus, the bad case is inexistent: no vertex of () contains non-integral compo-
nents. All vertices of @ follow the good case, and are all in X.



