EXAMPLE OF TECHNIQUE 2

Given $X=($ matchings, paths, trees, cycles, etc.), let $P=\operatorname{conv}(X)$. Let $Q=\{x$: $A x \leq b\}$. We want to show that $P=Q$. Showing that $P \subseteq Q$ is usually easy. The other way can be tricky. We saw three different techniques to do so. In the second technique,
a) we first show that Q is bounded,
b) and then we show that every vertex of Q is in X

We illustrate this technique with an example here.

Let

$$
X=(\text { perfect matchings in some bipartite graph } G=(V, E))
$$

and

$$
P=\operatorname{conv}(X)
$$

Let

$$
\begin{aligned}
Q=\left\{x \in \mathbb{R}^{|E|} \mid\right. & \sum_{i:(i, j) \in E} x_{i j}=1 \forall j \\
& \sum_{j:(i, j) \in E} x_{i j}=1 \forall i \\
& \left.x_{i j} \geq 0 \forall(i, j) \in E\right\}
\end{aligned}
$$

a) We first need to show that Q is bounded. This follows because $0 \leq x_{i j} \leq 1$ for all $(i, j) \in E$, which implies that $Q \subseteq[0,1]^{|E|}$.
b) Now, let x^{*} be a vertex of Q. Either $x^{*} \in\{0,1\}^{|E|}$ or there exists $(i, j) \in E$ such that $0<x_{i j}^{*}<1$.

Good case: If $x^{*} \in\{0,1\}^{|E|}$, then since $x^{*} \in Q$, it satisfies the equations $\sum x_{i j}=1$, and so the components $x_{i j}=1$ correspond to the edges of a perfect matching, meaning that $x^{*} \in \operatorname{conv}(X)$.

Bad case: Otherwise, if $x^{*} \notin\{0,1\}^{|E|}$, then there exists $(i, j) \in E$ such that $0<x_{i j}^{*}<1$. Let $E^{*}=\left\{(i, j) \in E: 0<x_{i j}^{*}<1\right\}$. First note that no vertex $v \in V$ can be adjacent to exactly one edge, say (v, w), of E^{*}. Indeed, $\sum_{u:(u, v) \in E \backslash E^{*}} x_{u v}=$ $z \in\{0,1\}$, and so $\sum_{u:(u, v) \in E} x_{u v}=x_{v w}+\sum_{u:(u, v) \in E \backslash E^{*}} x_{u v}=x_{v w}+z$ which is equal to 1 since $x^{*} \in Q$. If $z=0$, then $x_{v w}=1$, and so $(v, w) \notin E^{*}$. If $z=1$, then $x_{v w}=0$, and so $(v, w) \notin E^{*}$. Therefore, no vertex $v \in V$ can be adjacent to exactly one edge of E^{*}.

This implies that every vertex of V is adjacent to 0 edges of E^{*} or at least two edges of E^{*}. This further implies that there exists a cycle in E^{*}, and since G is bipartite, it must be an even cycle. Call such a cycle C. Color every other edge in the cycle red, and denote this set of red edges by E_{R}, and color the remaining
edges in the cycle blue, and denote this set of blue edges by E_{B}. Note that $E_{R} \cup E_{B}$ yields all the edges of C.

Let $\epsilon=\min _{(i, j) \in C}\left\{x_{i j}^{*}, 1-x_{i j}^{*}\right\}$. Create two new vectors, $x^{(1)}$ and $x^{(2)}$, such that

$$
x_{i j}^{(1)}=\left\{\begin{array}{ll}
x_{i j}^{*} & \text { if }(i, j) \in E \backslash C \\
x_{i j}^{*}+\epsilon & \text { if }(i, j) \in E_{R} \\
x_{i j}^{*}-\epsilon & \text { if }(i, j) \in E_{B}
\end{array} \quad \text { and } x_{i j}^{(2)}=\left\{\begin{array}{ll}
x_{i j}^{*} & \text { if }(i, j) \in E \backslash C \\
x_{i j}^{*}-\epsilon & \text { if }(i, j) \in E_{R} \\
x_{i j}^{*}+\epsilon & \text { if }(i, j) \in E_{B}
\end{array} .\right.\right.
$$

First observe that $x^{(1)}$ and $x^{(2)}$ are both in Q. Indeed, by the definition of $\epsilon, 0 \leq x_{i j}^{(1)} \leq 1$ and $0 \leq x_{i j}^{(2)} \leq 1$. Moreover, for any vertex v which is not on the cycle, $\sum_{u:(u, v) \in E} x_{u v}^{(i)}=\sum_{u:(u, v) \in E} x_{u v}^{*}=1$ for $i=1$ or 2 . For a vertex v on the cycle, v is exactly adjacent to one blue edge and one red edge, so $\sum_{u:(u, v) \in E} x_{u v}^{(i)}=\sum_{u:(u, v) \in E} x_{u v}^{*}+\epsilon-\epsilon=\sum_{u:(u, v) \in E} x_{u v}^{*}=1$ for $i=1$ or 2 . Thus $x^{(1)}$ and $x^{(2)}$ are both in Q.

Then, also observe that $x^{*}=\frac{1}{2}\left(x^{(1)}+x^{(2)}\right)$. Indeed, for $e \in E \backslash C$, we get $x_{e}^{*}=\frac{1}{2}\left(x_{e}^{*}+x_{e}^{*}\right)$. For $e \in E_{R}$, we get $x_{e}^{*}=\frac{1}{2}\left(x_{e}^{*}+\epsilon+x_{e}^{*}-\epsilon\right)$; similarly, for $e \in E_{B}$, we get $x_{e}^{*}=\frac{1}{2}\left(x_{e}^{*}-\epsilon+x_{e}^{*}+\epsilon\right)$. Thus $x^{*}=\frac{1}{2}\left(x^{(1)}+x^{(2)}\right)$.

This means that the vertex x^{*} is a convex combination of two other points in Q, namely $x^{(1)}$ and $x^{(2)}$, which is impossible. One way to see it is impossible is as follows.

Consider any face F that contains x^{*}. We'll show that any such face also contains $x^{(1)}$ and $x^{(2)}$.

We know there exists some valid inequality for Q, say $a^{\top} x \leq b$, that induces F. Since x^{*} is on F, we have that $a^{\top} x^{*}=b$. We can rewrite this equation as $\sum_{e \in E} a_{e} x_{e}^{*}=b$.

Since $a^{\top} x \leq b$ is a valid inequality for Q, we know that $a^{\top} x^{(1)} \leq b$ and $a^{\top} x^{(2)} \leq b$ since $x^{(1)}$ and $x^{(2)}$ are in Q. Observe that

$$
\begin{aligned}
a^{\top} x^{(1)} & =\sum_{e \in E} a_{e} x_{e}^{(1)} \\
& =\sum_{e \in E \backslash C} a_{e} x_{e}^{(1)}+\sum_{e \in E_{R}} a_{e} x_{e}^{(1)}+\sum_{e \in E_{B}} a_{e} x_{e}^{(1)} \\
& =\sum_{e \in E \backslash C} a_{e} x_{e}^{*}+\sum_{e \in E_{R}} a_{e}\left(x_{e}^{*}+\epsilon\right)+\sum_{e \in E_{B}} a_{e}\left(x_{e}^{*}-\epsilon\right) \\
& =\sum_{e \in E} a_{e} x_{e}^{*}+\sum_{e \in E_{R}} a_{e} \epsilon-\sum_{e \in E_{B}} a_{e} \epsilon \\
& =b+y
\end{aligned}
$$

where $y=\sum_{e \in E_{R}} a_{e} \epsilon-\sum_{e \in E_{B}} a_{e} \epsilon$.

Similarly,

$$
\begin{aligned}
a^{\top} x^{(2)} & =\sum_{e \in E} a_{e} x_{e}^{(2)} \\
& =\sum_{e \in E \backslash C} a_{e} x_{e}^{(2)}+\sum_{e \in E_{R}} a_{e} x_{e}^{(2)}+\sum_{e \in E_{B}} a_{e} x_{e}^{(2)} \\
& =\sum_{e \in E \backslash C} a_{e} x_{e}^{*}+\sum_{e \in E_{R}} a_{e}\left(x_{e}^{*}-\epsilon\right)+\sum_{e \in E_{B}} a_{e}\left(x_{e}^{*}+\epsilon\right) \\
& =\sum_{e \in E} a_{e} x_{e}^{*}-\sum_{e \in E_{R}} a_{e} \epsilon+\sum_{e \in E_{B}} a_{e} \epsilon \\
& =b-y
\end{aligned}
$$

Since both $b+y \leq b$ and $b-y \leq b$ (since $a^{\top} x \leq b$ is a valid inequality for Q), this implies that $y=0$, and thus that $a^{\top} x^{(1)}=b$ and $a^{\top} x^{(2)}=b$, i.e., that both $x^{(1)}$ and $x^{(2)}$ are on F as well.

Recall that this is true for any face F that contains x^{*}. In particular, since x^{*} is a vertex (recall that a vertex is a face) of Q, it is true for that face, i.e. this vertex of dimension 0 contains at least three different points: $x^{*}, x^{(1)}, x^{(2)}$. Thus, it cannot have dimension 0 and x^{*} cannot be a vertex.

Thus, the bad case is inexistent: no vertex of Q contains non-integral components. All vertices of Q follow the good case, and are all in X.

