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In this report I discuss the implementation and testing of the Curtis-
Morrow direct method (described in {5)) for reconstructing the conductivity

of a resistor network, given the measurements of currents and voltages at the
boundary.

1 Implementation

Troy Holly, Laura Smithies and I have written programs which use the direct
method to recover the conductivity of the resistors in a square grid. [ assume
the reader to be familiar with the principles of the Curtis-Morrow method,
and I proceed by discussing the implementation of the algorithm.

First, given a network of resistors, I calculate a matrix A~! which contains
the Neumann-Dirichlet data. Second, I describe the algorithm which we used

to reconstruct the conductances from the boundary data. Finally, I report on
some tests that were run.

1.1 Generation of a Matrix A-!

We consider a square grid with n nodes in each interior row. The number of

interior nodes is n?, and the number of exterior nodes is 4n. A square grid
with n = 5 is shown in figure 1.



[ ] ® ® [ ] .

figure 1

A matrix A7} is generated as follows. The nodes are numbered from 1 to
4n. For each 1 < j < 4n —1, let ¢; be the boundary current: the current at a
node ¢; is set equal to 1, the current at a node i;,, is set equal to -1, the current
at all other exterior nodes is set equal to zero. The voltages corresponding to
¢; are then calculated, with node 4n is taken as ground; that is, the voltage

at node 4n is set equal to 0. The voltages at the boundary nodes form the jt
column of the matrix A~! .

1.2 Reconstruction of the Conductances

The region is divided into 4 wedges as in figure 2a.
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The reconstruction algorithm is similar for each wedge: it is sufficient to
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rotate the wedge and the ground node by a 90 degree angle, as shown in
figures 2b and 2c. Therefore, I describe only the process of reconstruction for
the wedge No. 1. For such a wedge, the Curtis-Morrow method consists of
n steps. Since the method is inductive, it is only necessary to describe the
algorithm for one step. Suppose we are at step k. The current at a node { is

set equal to 1, and the current at a node m j» where j varies from 1 to £, is set
equal to -1, as in figure 3.
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The current at all the remaining exterior nodes is set equal to zero. For
each m;, we solve a 4n — 1 by 4n ~ | linear system

Ar=1b

where A, constitutes a base for the space of the current flow, and where the
vector b contains the current flow pattern corresponding to m;.

By multiplying the solution vector z by the matrix A~! we obtain the
boundary voltages corresponding to the current flow pattern stored in vector
b. We produce k boundary voltage vectors by repeating this process & times,
as j varies from 1 to k (See figure 3). At the next step, we form a k by k matrix

H, by extracting from each boundary voltage vector values corresponding to
the nodes ¢, ... g;_1, as in figure 4.
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The last row of the matrix H is set equal to 1. We have a k£ by & linear
system

Ha=w

where w is a zero vector except for its last entry, which is set equal to -1. The
last equation of the system corresponds to the equation

mtar+..tap=-—1

By solving this system, we obtain boundary currents as indicated in figure 5.

:
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This causes all the voltages on and above the diagonal to be zero. We use
A™! to calculate the the boundary voltages corresponding to this boundary
current. Next, using this boundary data, conductances as calculated from the
previous k£ —1 steps and Kirkoff’s law, we computé the interior voltages within

a wedge. See figure 6a, where the conductivities along the edges marked with
a O have already been calculated.
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Voltages at the nodes neigbouring the exterior ones are computed from the
formula:

(p—v)y=0

where v is the unknown voltage, v, is the voltage at its exterior neighbour,
and v is the resistor connecting the two nodes, as in figure 6b.

The remaining interior voltages are computed row by row, progressing from

the bottom of the wedge upward. The voltages in each row are calculated using
the following formula:

(”-',:' —”-‘-1.:‘)‘71+(Ui-1.j+1 -"Ui-l,j)‘h'l'(v;-z.j—vi-l.j)‘73+(vi-1,j—1 -vi-l,j)'h =0

where v; ; is the unknown voltage, Vi-1,j» Vi-1,j+1, Vi=2,; and v;_, ;_, are known

from the previous calculations of step k, as in figure 7, and conductances
T - -- 74 are known from the calculations of the previous k — 1 steps.
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Finally, using the boundary data, Kirkoff’s law, known conductances and
interior voltages, we reconstruct the conductances within the band defined by

the two dotted line as in figure 8. We start at a node { and progress upward
within the band until we encounter the end of the wedge.
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The conductivity of the resistor connecting the nodes { and m in figure 8



is calculated from the formula

Vg =1

where v, is the voltage at the node /. The remaining conductances are com-
puted as follows. When the resistor is horizontal, we use the equation

VY2 + v =0

where 7, is the unknown, and +; is known from the previous computations of
the kth step, as in figure 9.
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When the resistor is vertical, we use the formula

(Uw - vc)‘h + (Ua - vc)'f-‘-‘v ~VY—v7 =0

where «; is unknown, and =, ... v3 are known from the previous computations
of the kth step, as in figure 10.
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2 Testing the Reconstruction Method

I performed two sets of tests. The first set tested the program with various

types of conductivity distributions, and the second set was obtained by using
various accuracies of A~1.

2.1 Conductivity distributions

2.1.1 Constant Conductivity

The k + 1 by k matrix A contained an extra row obtained by extracting from
each of the k boundary voltage vectors values corresponding to the node g;
(See figure 6). To solve this overdetermined system, our program originally
called a LINPACK least squares solver that uses QR decomposition (which
finds an approximate solutions for overdetermined systems). We were able to
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recover a network of 264 resistors (an 11 by 11 grid with 121 interior nodes)
with 90% accuracy, and less accuracy for larger grids.

After replacing the least squares solver by a LINPACK general solver, which
uses LU decomposition for solving systems of equations, all resistors in a 420-
resistor network (a 14 by 14 grid with 196 interior nodes), were reconstructed
with an accuracy of at least 99.7%. For a network of 480 resistors (a 15 by
15 grid with 225 interior nodes), 478 resistors were reconstructed with an

accuracy of at least 90%, and the remaining 2 resistors were reconstructed
with an accuracy of 60%.

2.1.2 Randomly Generated Conductivity

The program was ren using 3 sets of randomly generated conductivity distri-
butions, and the results are presented in Table 1.

Table 1
range of v values | largest recovered grid accuracy range
1-10 13 x13 89%-100%
1- 100 11 x 11 80%-100%
1- 1000 9x9 99%-100% |

Note: By “recovered grid” | mean a grid, for which the reconstructed con-
ductivities are greater than zero. The reconstructed conductivities of negative

values tend to occur in the region where the original conductance values were
the greatest.

2.1.3 Regions of Low Conductivities

Resistors of low conductivity were located in the center of a 14 by 14 grid; the
results are presented in Table 2.



Table 2

« values
in the center

v values

in the backgr.

accuracy range
for the center

accuracy range
for the background

rest: 60%-100%

10-2 1 99.9%-100% 99.9%-100% |
10-3 1 60%-100% 99.8%-100%
10-4 1 1 value negative, 99.9%-100%

2.1.4 Regions of High Conductivity

Resistors of high conductivity were located in the center of a 14 by 14 gnd
the results are presented in Table 3.

Tabie 3

~ values
in the center

v values

in the backgr.

accuracy range
for the center

accuracy range
for the background

rest: 3%-84%

9 1 99%-100% 99.6%-100%
99 1 70%-97% 97%-100%
999 1 1 value negative, 1 value negative,

rest: 20%-100%

2.1.5 Regions of High and Low Conductivity

Resistors of high conductivity in the center of the grid are surrounded by
resistors of low conductivity; the conductivity of the background is 1. For a 12
by 12 grid (312 resistors), the results are presented in Table 4. (For networks

of size 13 by 13 and larger, the conductivities of central resistors were only
partly recovered.)
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Table 4

v values | v values accuracy range accuracy range | accuracy range

in center | around center | in center around center | in background

107 10~7 93.4%-100% 100% 100%

10' 10-3 1 value negative, 92%-100% 99%-100%
rest:0.2%-100%

102 10~7 10%-99.9% 99.6%-100% 100%

10* 10~° 1 vajue negative, | 1 value negative, 85%-100%
rest:0.02%-99.8% rest:25-100%

10° 10-2 1 value negative, 50%-100% 97%-100%
rest:0.01%-98%

2.2 Inaccurate A~!

Our program computes A~! with a double precision accuracy. To simulate
inaccurate measurements of the boundary values, A~! was rounded off to var-
ious numbers of decimal places. Using the rounded matrix, I tried to recover
a network of constant conductivity. I found out that if A=! is rounded off to d
digit accuracy, then approximately, a d by d grid can be reconstructed. I also
tried to recover a network with randomly located resistors of conductances.
In one case the conductances had values 0.5, 1, and 2: in another case the
conductances ranged from 1 to 10. The reconstructed grids were somewhat
smailer then for the constant case. These results are presented in Table 5.
[[6A[| denotes an absolute value of the largest entry in the matrix A™! — AJ?,
where A;' is computed using the reconstructed conductances.
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Table 5

No. of decimal | v values | largest accuracy | order of
places in A™! recovered grid range | ||[6A~{]
1 1 2 x 2 89%-100% 102
0.51,2 |2x2 89%-100% 10~2
1-10 . . -
2 1 3x3 71%-100% 10~2
0512 l3x3 70%-100% 10-2
1-10 2x2 92%-100% 10-3
3 1 4x4 89%-100% 10-3
0512 |4x4 89%-100% 102
1-10 3x3 86%-100% 102
4 1 5%5 88%-100% 107
0512 |5x5 87%-100% 10-3
1-10 4x4 91%-100% 10-3
5 1 6x6 89%-100% 1073
0512 |6x6 30%-100% 10-2
1-10 5x%5 90%-100% 10—3
6 1 7x7 74%-100% 10~
0512 17x7 65%-100% 10-3
1-10 6x6 51%-100% 10-3
T 1 8x 8 40%-100% 10-7
0512 |7Tx7 88%-100% 10-4
1-10 6x6 90%-100% 10—+
8 1 9x9 28%-100% 10~3
0512 |8x8 71%-100% 10—*
1-10 Tx7 88%-100% 10—+
9 1 9x9 90%-100% 10-3
0.51,2 |8x8 86%-100% 104
1-10 7x7 97.3%-100% 10-4
10 1 10 x 10 99%-100% 10-4
051,22 |9x9 98%-100% 10-3
1-10 8x8 70.2%-100% 10-*
11 1 11 x 11 90%-100% 10-°
0512 [9x9 99.9%-100% 105
1-10 9x9 89%-100% 105
12 1 12 x 12 75%-100% 10-7
0512 [11x11 88%-100% 10-4
1-10 10 x 10 90.5%-100% 10-3
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For the last test, we considered a network of 60 resistors; (n = 3; the

pattern is as shown in figure 1) The original values of the conductivities gamma
are as follows.

3.000000 7.000000 1.000000 8.000000 1.000000
1.000000 4.000000 3.000000 5.000000 6.000000 4.000000
1.000000 = 3.000000 8.000000 7.000000 5.000000
1.000000 2.000000 1.000000 5.000000 3.000000 7.000000
1.000000 9.000000 4.000000 3.000000 4.000000
1.000000  7.000000 1.000000 6.000000 1.000000 2.000000
1.000000 1.000000 1.000000 4.000000 2.000000
1.000000 3.000000 5.000000 1.000000 5.000000 1.000000
1.000000 1.000000 6.000000 7.000000 3.000000
1.000000 4.000000 1.000000 8.000000 4.000000 1.000000
1.000000 1.000000  1.000000 1.000000 7.000000

For this network, A™" is calculated by the Neumann solver. Then A-! is

made inaccurate by rounding its values to 5, 6, 7, 8, 9, 10, 11 and 12 places.
The results are listed below.

A~! is rounded to 5 decimal places, the recovered values of conductivities:

3.000030 6.997676 1.000091 8.018972  1.000000
1.000000 4.002458 2.990327 4.949424 6.033999  4.000000
0.964402 3.053650 8.343167 6.550438 5.009314
1.008368 1.991478 0.945085 5.121097 3.002047 6.996144
0.931063 9.211617 4.527863 3.011582 3.995535
1.003313 6.901683 1.027161 5.749884 0.998677 2.000854
0.966330 1.034061 1.031957 3.928177 1.995806
1.001106  3.10S529 5.063558 0.998784 4.994728 1.000325
0.994415 1.000835 5.941277 6.995690 2.989534
1.000000 4.002761  1.000264 7.998434 3.995147 1.000000
1.000000 0.999888 1.000016 1.000032 7.000350
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A~! is rounded to 6 decimal places, the recovered values of conductivities:

3.000003 6.999813 0.999999 7.998099 1.000000
1.000000  4.000254 2.999911 4.998851 6.004736 4.000000
1.000190 3.001256 8.019076 6.984170 4.999649
0.999952 2.002154 0.996184 4.976418 2.998608 7.000083
0.998873 9.015000 4.108281 3.000210 3.999827
1.000067 6.994498 0.991504 6.023826 0.999681 2.000046
0.999458 1.000888 1.001032 4.013853 1.999770
1.000066  3.000343 5.000334 0.999147 4.998272 1.000027

0.999724 0.999721 5.997201 6.998054 2.999116 _
1.000000 4.000264 1.000300 8.000929 4.000220 1.000000
1.000000 0.999990 0.999995 1.000002 7.000007

A~ is rounded to 7 decimal places, the recovered values of conductivities:

3.000000 6.999955 1.000000 8.000239 1.000000
1.000000 4.000049 2.999951 4.999693 5.998605 4.000000
0.999383 3.000380 8.002257 6.993762 4.999978
1.000141 1.999334 0.999630 5.001825 2.999890 7.000039
0.999131 9.000405 3.996184 3.000047 3.999874
1.000044 6.998662 0.999808 5.995793 0.999975 2.000019
0.999516 1.000531 1.000279 3.998563 1.999926
1.000017  3.001465 4.999920 0.999927 5.000049 1i.000004
0.999916 0.999944 5.999564 7.000178 2.999865
1.000000 4.000078 1.000071 8.000134 4.000169 1.000000
1.000000 0.999997 0.999999 0.9999%9 7.000002
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A~! is rounded to 8 decimal places, the recovered values of conductivities:

3.000000 7.000000 1.000000 8.000032 1.000000
1.000000 4.000000 2.999987 4.999958 5.999945  4.000000
0.999973  3.000061 8.000187 6.999562 §5.000021
1.000006 1.999953 0.999981 5.000284 2.999994 6.999990
0.999975 8.999883 3,999691 3.000071 4.000004
1.000002 6.999943 0.999%885 6.000329 0.99999% 2.000000
0.999982 1.000023 0.999990 4.000077 2.000002
1.000001  3.000045 4.999955 1.000004 4.999%79  1.000000
0.999%94 1.000003 6.000054 7.000032 2.999996
1.000000 4.000008 1.000001 8.000004 4.000006 1.000000
1.000000 1.000000 1.000000 1.000000 7.000000

A~! is rounded to 9 decimal places, the recovered values of conductivities:

3.000000 6.999989 1.000000 8.000000 1.000000
1.000000 4.000001 3.000002 5.000006 5.999989 4.000000
0.999991  2.999993 8.000014 6.999961 5.000000
1.000002 1.999992 0.999994 4.999958 2.999998 7.000000
0.999987 9.000013  4.000075 2.999999 3.999999
1.000001 6.999977 0.999993 5.999953 1.000000 2.000000
0.999993 1.000008 1.000001 3.999983 1.999999
1.000000 3.000022 5.000002 1.000000 5.000001 1.000000
0.999999  1.000000 5.999997 6.999997 2.999999
1.000000 4.000001 1.000000 8.000000 4.000000 1.000000
1.000000 1.000000 1.000000 1.000000 7.000000
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A~! is rounded to 10 decimal places, the recovered values of conductiviies:

3.000000 7.000000 1.000000 8.000000 1.000000
1.000000 4.000000 3.000000 5.000001 6.000000 4.000000
0.999998  2.999999 8.000000 6.999995 5.000000
1.000000 1.5999999  0.999998% 4.999999%  3.000000 7.000000
0.999999  9.000001 4.000006 3.000000 4.000000
1.000000 6.999999 0.999999 5.999999 1.000000 2.000000
1.000000 1.000001 1.000000 3.99%99% 2.000000
1.000000 3.000002 5.000000 1.000000 5.000000 1.000000
1.000000 1.000000 5.998999  7.000000 3.000000
1.000000 4.000000 1.000000 8.000000 4.000000 1.000000
1.000000 1.000000 1.000000 1.000000 7.000000

A~! is rounded to 11 decimal places, the recovered values of conductivities:

3.000000 7.000000 1.000000 8.000000 1.000000
1.000000 4.000000 3.000000 5.000000 6.000000 4.000000
1.000000 3.000000 8.000000 6.999999 5.000000
1.000000 2.000000 1.000000 5.000000 3.000000 7.000000
1.000000 9.000000 4.000000 3.000000 4.000000
1.000000 7.000000 1.000000 6.000000 1.000000 2.000000
1.000000 1.000000 1.000000 4.000000 2.000000
1.000000 3.000000 5.000000 1.000000 5.000000 1.000000
1.000000 1.000000 6.000000 7.000000 3.000000
1.000000 4.000000 1.000000 8.000000 4.000000 1.000000
1.000000 1.000000 1.000000 1.000000 7.000000
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A7l is rounded to 12 decimal places, the recovered values of conductivities:

3.000000 7.000000 1.000000 8.000000 1.000000
1.000000 4.000000 3.000000 5.000000 6.000000 4.000000
1.000000 3.000000 8.000000 7.000000 5.000000
1.000000  2.000000 1.000000 5.000000 3.000000 7.000000
1.000000 9.000000 4.000000 3.000000 4.000000
1.000000 7.000000 1.000000 6.000000 1.000000 2.000000
1.000000 1.000000 1.000000 4.000000 2.000000
1.000000  3.000000 5.000000 1.000000 5.000000 1.000000
1.000000 1.000000 6.000000 7.000000 3.000000
1.000000 4.000000 1.000000 8.000000 4.000000 1.000000
1.000000 1.000000 1.000000 1.000000 7.000000
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