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one of the central research themes this last summer was to find accurate

. pumerical techniques for solving the inverse problem v L¥7qu=0, i.e. to

ind the conductivity X on some region given boundary potential and

houndary current data.

We studied the finite difference method. To apply this method one must

first solve the forward problem, i.e. determine the Dirichlet-Neumann

rrents. Since this
as
ent it a matrix denoted /\ .

pping which maps poundary potentials to boundary cu

pping is a linear transformation we can repres

70 determine A we must first, before establishing a boundary potential

- pasis, specify the geometry of the network used in the numerical

approximation. Most research has been done using a square network where

each interior node has four neighboring nodes.

§e felt a better approximation would result if one were to construct a

network where each interior has six neighboring nodes. A choice had to be

made as to the geometry of the boundary. We solved the forward problem

for both a triangular and hexagonal boundary. However, we discoverd that

for most (if not all) boundary configurations for a triangular network

thar the inverse problem cannot be solved in analegy with the square

network. That is, instead of using only one boundary potential vectoxr for

sach iteration (one-function approach) we must use two boundary potential

yectors for each iteration (two-function approach}. For large networks

+his can increase computation time significantly. The idea is to apply

appropriate boundary potentials and then proceed to measure boundary

currents and apply Kirchoff’s law at interior nodes so as to generate a

system of linear equations with conductances as unknowns., We have

attempted a variety of schemes all of which result in an undetermined

system using the one-function appreach.

For example, consider the triangular network shown in figure 1. In

analogy with the Curtis-MoOrrow method we begin by (1) applying a

potential of 1 at the lower left corner {(node 1) with zerc potentials




o)
L=
elsewhere on the boundary and (2} applying 0 currents at nodes 7 through

10. By measuréing currents at nodes 2 and 15 we obtain conductances P}
and E’L respectively, i.e. I = ¥, and T £, Note that measuring
currents here really means multiplying/& by the boundary potential vector

and reading off the corresponding entries in the resulting current vector.

For the next sequence of calculations refer to figure 2. We place 0

currents at nodes 7 through 10 and 0 potentials at all boundary nodes

eéxcept nodes 15 and 2.

By Cauchy-continuing the potentials (using

Kirchoff’s law) we obtain 0 potentials in the interior. And by fixing

node 15 to a potential of 1 we are forced to accept a (yet to be measured)

potential :ﬁ'at node 2. dl could be physically measured but is better

found using A and an a priori 0 boundary current, say entry 8 in the

. gurrent vector:
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Next applying Kirchoff’

U A0 T o0 s

$ law at node 16 we encode information about X;

?."’g {\""“) + Xﬂt"’."‘))':o
Yg *d, ¥, = o

We try to alleviate this

Crisis by writing down current equations at nodes 2 and 15, i.e,
T‘S = a’,f, 1—u\ & X; k}— d,) | 3/7 (L"U)"“ a/ﬁ’(lﬁn)
T, = 5’1_\1 d. =~} 4 h’}(o’\l" I\} —+ ?fl-q( D‘,—O’ 4 &5 (d"‘ﬁ)

these last two equations have introduced three new unknowns, ¢. . %4 , and

+ but we have not yet exhausted all of our information sources. We can

3til)l read off currents at nodes 3 and 14, i.e. 5







 Furthermore, we have the current at node 1

@ T - (e )
‘Thus adding (1), (2}, and (3) get
T, 4 X, 4 Ty 4X,,4Tg = O

i.e,, the net current flowing in and out of the network is 0. Although
this confirms our assumption of a steady-state network we have not solved
fer ¢, and Ka . Witﬂ“our model no other physics can be employed to gain
information about these conductances., Thus in essence we have shown one
gcannot circumvent the underdetermined nature of the triangular network
using the one-function approach.

%o instead we turned to the two-function approach for a hexagonal
network with hexagconal boundary. Roughly speaking, the general scheme
for solving this inverse problem is to first divide the hexagon into six
wedges and then, starting at the boundary, penetrate to the center.

Refer to figure 10 and 11, Label nodes as shown. Consider wedge I. To
determine potentials in the interior it was previously thought that the
currents at nodes 9 through 17 must all be set to 0. This introduced a

" more overdetermined system than is necessary. In fact we only have to
set 0 currents at nodes 10 through 16 for all computations. This will
improve the accuracy if using a least squares solver. At nodes 6 through
24 set the boundary potentials to 0 and at node 1 set the boundary
potential to 1. This forces potentials ¢ through #, at nodes 2 through

5 and 0 potentials at all interior nodes. Apply Kirchoff’s law at nodes

25 through 28, e.g.

{10} (i-21Y, + (o, ~a) 5’.., = 0 {(Two unknowns in one equation)

1n accordance with the two-funcrtion approach set the potential at nede ©
te 1 forcing potentials B, through P, at nodes 1 through 4. Again

applying Kirchoff’s law at the same nodes as before, e.g.
(1) (p,-s) N+ \B-0) =

Solving (10) and {11) simultaneously we obtain 31 and X;. Next measure

current at node 24 to find ¥,, i.e.
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. = (e-1)y,
150 I = Qt-:ﬁb" “tl'o\ 31"'("0‘(‘)&3

his determines Ké. Measuring the current at node 2 will yield YL since
o XV v, and ZS are already known. Proceeding in a similar manner we
btain the remaining conductances in shell 1. For shell 2 we alter the
‘houndary potential as shown in figure 12 and employ similar techniques
‘only now we have to contend with nonzero interior potentials ?W through
fﬁqat nodes 25 through 28,

Algorithms had been developed to run this scheme but computer account

Fproblems prevented the completion of a computer implementation.
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