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Abstract

In this paper 1 will outline a method for determining the location of a resistor, or
conductor. in a three-dimensional network whose conductivity has been altered from
its original value.

1 Description of the Algorithm

The method we will use has four basic steps. First. given the base resistor network. generate
the Lambda matreix lor it. Second. construct the Lambda matrix for the network with the
changed resistor. Thivd. compare the two matrices to determine the colimns that exhibil
the greatest change, Finally. calculate the coordinates of the c:hauge‘:_i resistor,

2 Constructing the Lammbda Matrix

In all cases, we consider only enbic resistor networks with 2 nodes along each edge of e
enbe. This means that the network has #? interior nodes. 612 boundary nodes, and a total
ol 3(n + 1n? resistors.



2.1 The Numbering Scheme

We nnmber the boundary nodes by considering one face at a time: first the hottom. then
[vont. then left. then back. then right. and finally the top. Ou each face number the nodes
seqnentially by first going front to back. then hottom to top. then left to right. noting that
only 1wo of these directions will be used on any given face. Thus the hottom face will have
nodes numbered from 1 to n. the front face from #? + 1 to 202 and so on. The inlerior
nodes are numbered in a similar fashion. The bottom level will have nodes | (o 12, the next
higher level n2 41 to 20%. ete.

The conductors are numbered in a slightly different manncr. I we consider cach node
{(both boundary and interior) to have coordinates (x. 5. z). where & is the left-right distance. y
tre Tront-back distance, and = the top-bottom distance (all ranging {rom0 to s 41). then the
conductor between nodes (. gy 21) and (3. y2. 32) has coordinates (. 4 o 4y + 2. 21 + 22).
For example. consider the front elevation of a 5x5x5 eube (Figure |).
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The condnctor marked °1° has coordinates {1.2.10). while 2" has (L.2.9) and 3" has
(11.2.1) for their coordinates.
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It is lairly easy to see that this scheme will give us a unique representation for every
resistor. It is also tmportant to note that exactly one of the coordinate values is odd. This
will important when we reconstruct the coordinates of the changed coneluetor.

2.2 Generating the Lambda Matrix

The Lambda matrix \is defined to be the matrix whose {j-th entry .\, ; is the current Howing
into boundary node ¢ when a potential of 1 is applied at node ;. with all other potentials at
the boundary set to 8. .\ will then be a square matrix with dimension Gi*.

Tlhe matrix generated in this manner will have similar properties {o the Lambela matrix
in Lhe two-ditmensional caser A 1s a symmetric matrix whose rows and columns sum to zero.
all entries are non-zero, all non-diagonal entries are negative. and all diagonal entries are

|m.‘~‘ii e,

3 Finding the Altered Resistor

In this section. we indicate how to determine the location of a changed resistor. given the
Lambda matrices for both the base network and the changed network.

3.1 Comparing the Lambda Matrices

Consicler each colunm (or row) of the Lambda matrix as a vector of dimension 6. Thas
both Lambda matrices. generate a sel ol 6n? vectors. {1} and {H;}. Calealate the angle
0 between each pair of vectors V; and W (i = 1,2,....6n%). using the fact that cos#), =
Vi TG/ NG This vields a set of 6n% angles.



3.2 Determining Coordinates

To start with, we separate the 8;'s into six sets of n? elements. corresponding to cach of the
<ix sides (0 to 0,: in one group. #,241 to #5,2 in another, and so on). Among each of the
six sets, il the node (or nodes) with the maximum @;-value for that side. Note that {here
will be six of these maxinum values.

Fonr of the sets will have two such nodes. and the other two will have only one. T'he two
sets with the single maximum node correspond to the faces that (he changed conductor is
“in line” with. More precisely. consider Figure 2. a cross section of a cube where the resistor
that has been changed is marked with an *x’. For simplicity. we order the nodes as indicated
ant ignore the front and back faces. as well as travel in that direction.
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18 8 Figure 2
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fn this example. 8; would attain its comparative maximum values at nodes 2. 8. 9, 1 1.
17, and I8, If we were to number the sides clockwise starting at the top. we would see that
the marked conduetor is “in line' with sides 1 (top) and 3 (bottom). the sides with only one
node attaining the maximum value for that side.
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to calenlate the coordinates of the changed conductor. we need to know the following:
the Jowest-nwnbered node that attains the maximum #-value on either the right or left side.
and similarly for the front and back sides and the top and bottom faces. We also reeuire the
number of the side that the conductor is “in line” with (where 1 is the hottom. 2 the front. 3
is lelt, + the back. 5 the vight. and 6 the top). In Figure 3 we have the middle cross-seetion
(three lavers back) of a 5x5x5 cubic network. This time we will number the nodes properly.

128 133 138 143 148
65 115
64 114
63 113 Figure 3
62 112
X
61 111

In this case, the conductor marked is in line with faces 1 and 6. and the nodes that attain
the maxinmun #-value on their side are 135. 41. 42, 61. 62, 91. 92. 111. 112, and {13, (Note
thad nodes TH and 42 come from the front face. and nodes 91 and 92 from the back.) From
this collection of nodes we keep only nodes 13. 41. and 61. {Note that we conld keep other
combinations: for example. 18, 91. and 61, or 143. 91. and 111.)

We now apply these three nodes to the appropriate formulas. based on which side the
conduetor i *in line’ with. to determine the coordinates of the resistor. The reason that
the side that the conduetor is “in line” with is so important is that it tells us whicl of the
cootdinates of the conductor must he odd.
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3.3 The Formulas

In all of these formulas. @, b, and ¢ are the lowest- numbered nodes that attain thal maxinnim
f-valie un the hottom (or top). front (or back). and left (or right) sides. respectively. The
coordinates {or the resistor are then (. y. ).

I the conduector is tin line” with either the bottom or top face. then
r=2(1+ (e« = 1)/}
y =21 -2n+(c—1)/n)
z=2(bmodn) +1
I the conductor is tin line” with either the front or back face. then the coordinates are
given hy:

2
e mod n) +1

L {Zn. it =0 (mod n}):

T T L 2(bmod n).  otherwise.

IFinally. it the conductor is ‘in line” with either the right or left tace, then

r=2l+(a—-1)/n)+1
¥ =21 =2u4{c—1)/n)

_ {2::. ' if-=0 {(modn)
1 2(bmod n). otherwise.

(Ll + («~1)/n)
{

1y

4 The Program

The program consists of four parts. corresponding to the four basic stages in the algorithm,
First. it obtains the background conductivity and calculates the Lambda matrix for the hase
network. It then reqests the position of the resistor to be changed and its new vahie, and
calenlates its Lambda matrix. The program now takes these two matrices and calenlates the
angles hetween pairs of columns. applying the calculated data to the appropriate svstem ol
cqualions Lo generate the location of the resistor.

The program is written in FORTRAN and is as modular as possible. s efliciency is also
boosted by the use of named COMMON blocks (which make a noticeable difference in the
time needed o caleulate the Lambda matrices).
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4.1 Numerical Problems

There were some basic numerical problems encountered along the way. Some of them have
been resolved. while others may or may not have a solution.

4.1.1 Time and Space

Tune and memory space are limiting factors for this method. In order to make the program
ren Taiely guickly. it is vecessary to use a banded solver routine for generating (he Laminla
malrices. This gives a substantial improvement in the running times. as indicated in Table
l.

[ Table 1]

ni{ time
21 00:01
3 | 00:01
1| 00:04
51 00:10
G | 00:25
71010t
S| 02:12

As concerns memory space. it is not possible to set aside enough memory to caleulate
the Lanmbda matrix for a 9x9x9 cubic network using the banded solver. Memory is not a
problem with the general solver. but the program requires a great many honrs to run.

4.1.2 Rounding Errors

One of the major problems encountered has to do with rounding errors. For example. if
we look hack 1o Figure 3. we see that nodes 111 and 112 should hoth attain the maxinnm
f-vahite. Tlowever. in general. the two 8-values are different due to rownding errors that oeenr
i some of the calculations. The problem arises. for example. when 8, is larger than 0,,,.
This means that the lowest node that attains the maximum #-value is wrong. To compensate
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for this. 1 introduce a {olerance level. A level of 25% of the maxiinum #-value on a side is
cnongh in the 2x2x2 and 3x3x3 cases.

When there are more than 3 nodes on an edge. a tolerance level will not solve the
problems. For nxnxn systems with n > 4. the code needs to e rewritten to deal with the
diflerent properties that arise,

4.1.3 Other Problems

There are a lew other incidental problems that should be noted. Most of these seem Lo be
compiler-speeific. Some examples: a GOTO statement altering calculations: variables heing
overwritten: and the banded solver not working when the program becomes (oo large. These
probiems. along with some of the memory restrictions. may disappear on a dilferent machine.

4.2 Other Methods

Another way to compare the Lambda matrices is simply to take the differcuce of the diagonal
entrics. rather than to calculate the angle between columns: that is. instead of calenlating
;. we ealenlate d;, = L, ; — M, ; wheve I and M are the two Lambda matrices. While the
resilis nsing this method are generally correct. there are some cases where the differentia-
tion between the d's is not great enough. even when a tolerance level is nsed. (o generale
acearately the correct nodes.

5 Results

We close with a summary of the results obtained so far. Given a cubic resistor network {vither
28252 or 3x3x3) with a constant base conductivity of ¢ and one resistor with a conductivity
of & the method T have described will correctly find the coordinates of the different-valued
resistor. This seems to be independent of the choice of ¢ and 4. as long as & — ¢ > 10=% andl

o > )

In the Ixixd cube. approximately a third of the resistors could he detected acenrately.
It is ideresting Lo note that a certain conductor will seem always to work. or never work. In
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other words. it does not appear to depend on the choice of ¢ and k. Another intoresting lact
is hat “syinmetry” does not seem to predict whether or not a given resistor will be lound
acenrately:

there are pairs of resistors which have ‘symmetric’ positions in the cube. but one works
and the other does not.

Finally. it seems that it should be possible to calculate the change in the resistor based

on the #'s penerated. There appears to be a definite pattern to the size of the #s and the
magnitude of the change.

6 Further Ideas

The next step is to be to work on the program so that it can haudle the IxIx§ cube com-
pletely. This should require only a fairly simple reworking of the code. making it work in a
manner more sophisticated than the fairly simple way it cuurently works,
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