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This paper describes the concept behind an unfinished problem developed during
the summer of 1989 as a potential improvement for the inverse problem of determining the
conductivity of a network of resistors given information from the boundary. The process
involves constructing a version of a dual tessellation of a resistor network grid of the kind
considered in the Curtis-Morrow technique, and then solving the inverse problem on this
“dual graph.” After describing the construction of the dual graph, I will describe certain of
its characteristics which suggest its possible usefulness, followed by an account of the

difficulties encountered in its actual implementation,

1 The Geometry of a Dual Graph

A dual graph, according to this plan, is understood only in relation to the original
graph which generates it. An original graph consists of a network of resistors as defined
by Curtis and Morrow, in which each boundary node is adjacent to exactly one other node
in the network, resulting in a spiked appearance, as in the following representative 9 by 9

square network:



A node exists at both ends of each edge, at every intersection and at the end of each spike.
Each individual edge has a specific conductivity. A dual graph in this context does not
have the ordinary meaning given it in graph theory, where it would consist of the same
nodes (vertices) as before and only those edges which had not connected two vertices in the
original graph, but rather something more along the lines of a dual tessellation. For every
edge in the original graph, a duél edge is defined across it, as demonstrated for three edges

in the following figure.




The new dual nodes are defined not only in the topological interior of each square but also
in the divisions of the plane which would result if each border spike were extended
indefinitely, producing a network whose boundary nodes all touch at least one other
boundary node, a phenomenon which can be considered for simplicity as differentiating
ordinary networks from boundary networks. Continuing this process for each edge results

in an ordinary graph and its complete dual, as below:

where the dual is represented by the darker lines.
If a node or edge is missing in the original graph, the loss will produce a similar

change in the dual, as in the following examples:



A dual network is constructed in exactly the same way for a rectangular network, and
similarly for a hexagonal, triangular, or even an Archimedean network. However, the dual
of a hexagonal network (six neighboring nodes to an interior node) will be triangular (three

neighboring nodes to an interior node), and vice versa.

2 The Conductivity of a Dual Graph

Various possibilities exist for the values attached to the dual graph. The simplest
suggestion for the conductivities of the edges would be to let the conductivity of any given
dual edge be the same as the conductivity of the edge from which it was generated in the
original graph. Other plausible ideas include some form of proportionality; either the
conductivity of the dual edge will be directly or inversely proportional to the conductivity of
the original edge. The value bf the imposed currents or voltages for the dual nodes
presents a greater problem, as there is no nice one-to-one correspondence between nodes as
between edges. The dual nodes might be given the value of the mean of the ordinary nodes

surrounding them, or perhaps some weighted average of the surrounding ordinary nodes



multiplied by the conductivities of the adjacent dual edges. Care may be necessary at the
corners of the dual graph, since whatever experimental algorithms are used to assign values
to the dual edges and nodes might result in a violation of Kirkhoff’s Law, rendering the
network inconsistent. In the formation of the lambda matrix, however, where all but one

node is zeroed, such complications should not arise.

3 Relation between the Ordinary and Dual Networks

Clearly, both ordinary and dual networks will have the same number of edges,
although in significantly different configurations. Also, the geometry and conductances of
the dual network will be unique to a particular original graph. Depending on the
complexity of the algorithm chosen for determining the values associated with the dual
nodes, these values may not be unique to a single original network, but any two original
networks which produced identical dual networks would almost certainly have to contain
very similar information.

While the number of edges and thus conductances remains the same, the dual graph
contains considerably fewer nodes. To be specific, an m by n original network, containing
m(n+2) + n(m+2) nodes, yields a dual network with only m{n+1) + n(m+1) nodes.
Further, the number of exterior nodes remains the same in both original and dual graphs;
the loss is only in the number of interior nodes. (These last statements exclude the unusual
cases of a missing boundary node, or the removal of an interior node which is adjacent to
two corner boundary nodes. Even in these cases, however, the dual network should be
simpler to solve than the original.)

Here, then, is the basic idea. In the inverse problem, we are given information
about the boundary and asked to determine the conductances inside the network. If the
boundary information could be recombined into dual boundary information, and the dual

conductances, once determined, translated back into original conductances, then the



problem should be solved using considerably fewer calculations, as there are fewer interior
nodes to compute.

Admittedly, there is no evidence that this trick should work. However, the
equivalent number of inputs (pieces of boundary information and boundary nodes) and
outputs (conductances and edges) is a coincidence which is too convenient to be passed
over without examination. The trick, given appropriate algorithms for the dual values, has

the potential to be a technique,

4 Testing the Hypothesis

Unfortunately, so far I have no data with which to either support or cast doubt upon
this idea. After taking a great deal of time to solve the forward and inverse problem for the
ordinary spiked m by n rectangular case, I was unable to program the forward problem for
a dual network (one in which the boundary points are directly connected by edges).
Programming the computer to create a dual network given a spiked network was quickly
done. However, I first laboured under the misconception that the boundary nodes needed
to be included in addition to the interior nodes in the A matrix, the matrix which computes
the values (voltages, in the Dirichlet to Neumann case) of the interior nodes, which resulted
only in great confusion on the computer’s part (computations of NAN’s). Once that main
mistake was corrected, the program seemed to work, except that somehow, during
computation, the computer changed the value of either m or n, the variable corresponding
to the number of rows or of columns, to zero. A little debugging revealed that the problem
occurred when the linear algebra library program which solved the A matrix was called.
This problem did not occur with the ordinary spiked case and was not restricted to any
particular terminal. I was unable to proceed without using the library programs, so the

hypothesis remains, unfortunately, completely untested.



The greatest challenge to the likelihood of the dual solution technique bearing fruit
is the apparent irrelevance of the values of the dual corner nodes when solving the values of
the interior nodes. Nevertheless, one would not expect the dual nodes which correspond to
the planar region separated by corner pair spikes to behave in the same way as other dual
nodes because of the unusual behavior of these corner spike pairs, and in any case the
values of the dual corner nodes will influence the adjacent connected nodes. Despite the
apparent difficulties involved, and despite my inability to test the dual networks, the idea

merits further study.



