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Section 1.1 —- Introduction

We give a method for finding a map from Dirichlet data (voltages
on the boundary nodes) to Neumann data {(currents through the boundary
nodes) for general resistor networks. We then present, without
proof, a method for determining the shape of some networks.
Section 1.2 -- Definitions

We define a resistor network A to be a set of r resistors and a
set of n nodes. Each of the nodes lies at a point in space where one
or more resistors terminate, and each of the resistors connects exactly
two nodes, We let

N {Nerﬁr-"an}

be the set of nodes,

R

{{R1,1,Rs,2},{Rz,3,R2:2} )., {Rr,1,Rr 21}
be the set of resistors, and

G = {G1,Gzy0++,Gr}
be the set of the conductances of the resistors. (Conductance is the
multiplicative inverse of resistance.) A node N; is a neighbor of
another node Nj if the set {i,j} is in R; that is, if Rx, = it and
Rk = j for some k in [1,r]. All nodes in N must have at least one
neighbor; those with exactly one neighbor are called boundary nodes
and those with more than one are called interior nodes. Thus, N is
the union of two disjoint subsets, the set

B = {Bi,Bz2,...,Bp}
of b boundary nodes and the set

I = {I,I25000yIn-b}
of interior nodes. An example of a resistor network is shown in

Figure 1.1.
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Section 2 —- Finding a Map from Voltage to Current Data

Were we to actually construct a physical network we could attach
electronic equipment to measure the voltage and current al each
boundary node. We would like to find a function relating these two
guantities. Currents are related only to differences in voltage,
however, so there exist multiple combinations of voltages which give
rise to the same currents. Thus we can only hope to discover a
function from the boundary voltages to the boundary currents and not
the other way around. Without proof, we assume that the currents are
linear in the voltages, so this function may be expressed as a b by
b matrix L, where each entry Lij; is the current that flows into
boundary node Bi per volt at boundary node B;.

In order that this matrix be useful we must have numbered the
boundary nodes in a logical manner. For the most part we will be
considering planer networks; that is, networks all the nodes and
resigstors of which lie in a plane. For such networks it is sensible
to number the boundary nodes clockwise around the network.

Section 2.1 -- Finding the Matrix L

Let us assume for the moment that we can determine the boundary
currents for a specific set of boundary voltages. (A method will be
given in Section 2.2.) Then we can find L, a column at a time. To find

the ith column, we set the voltage at boundary node By to 1 and the



voltage at all other boundary nodes to 0. Solving for the resultant
boundary currents, I{B;} for j in [1,b]l, we let Li,; = I(B;).
Repeated application of this procedure generates the entire [, matrix.
Section 2.2 —— Finding Boundary Currents from Boundary Voltages

We now substantiate the assumption made in fhe previous section.
To find the currents flowing through each boundary node we need to
know the voltages at each end of the boundary resistors. We are given
the wvoltage at each boundary node, U(B;) for i in [1,b], but we must
calculate the voltage at the single neighbor of each boundary node.
To find these potentials we will need to solve for the voltage at
each interior node, U(L) for i in [1,n-b]. For each interor node we
can set up an equation using Kirchhoff's Law, which states that the
total current flowing into each node must be zero. The current
flowing intc I; from a neighbor N; is a known constant (the
conductance of the resistor connecting Ii to Nj) times the difference
in potential of the two nodes, U(N;)-U(L). If N; is a boundary node
then this difference is just a known constant minus one of the
variables for which we are looking. On the other hand, if N; is an
interior node then the voltage drop is just the difference of two of
these variables. Summing the four incoming currents and setting this
function equal to zero gives for each interior node I; a linear
equation in from one to five variables, depending on how many of Ii's
neighbors are boundary nodes. Taking these equations simultaneously
we generate a system of n-b linear equations in n-b unknowns. Solving

gives U{(L) for all i in [1,n-b].



We can then easily calculate the current flowing into each

boundary node B; using the equation,
Ii) = GJ{U(Bi)-U{Ix}},

where j is the number of the resistor that connects Bi to its single
neighbor and Ik is that neighbor.
Section 3 -- The Inverse Problem, Determining A from L

The problem is significantly more difficult iln reverse. Curtis
and Morrow [lj give an algorithm which sclves for G from L if the
shape of the network (the sets N and C) is given and of a specific
form, called rectangular. 1t is likely that a program to find G, N,
and C from L for any resistor network cannot be written. Perhaps,
however, we may succeed for some networks more general than
rectangular.

Let a regular resistor network R be a planer resistor network A
with the following additional properties. First, every interior node
Ii has exactly four neighbors, one in each of the four compass
directions from Ji. The distance between any two neighboring interior
nodes is 1. To prevent boundary nodes from overlapping, the distance
between each boundary node and its single neighbor is /3. Finally,
each interior node can have among its four neighbors at most two
boundary nodes, and if it has two then they must be sequential.
Figures 3.l.a and 3.1.b show resistor networks that are not regular;
the first has two neighboring boundary nodes, but they are not
sequential. The second has too many neighboring boundary nodes.

Figure 3.1.c is a regular resistor network,



- -

B+

Figures 3.1.a, 3.1.b, 3.1l.c

B'\ BIO 31 Bt

To further simplify matters, we shall ignore G and seek only to
recover the shape of R, the sets N and C.

Section 3.1 -- The Boundary Curve of R

To find the shape of a regular resistor network R it is necessary

only to find its boundary curve. This was in fact the motivation
behind the definition of a regular network., The boundary curve
dR of a regular network R is the curve generated by connecting, in
order, the neighbors of the boundary nodes of R. In Figure 3.l.c
the boundary curve is emphasized. Note that the restrictions which
prevent the networks shown Figures 3.1.a and 3.1.b from being regular
keep the boundary curve from doubling back on itself. For a regular
network, dR is always simple closed curve.

The shortest path connecting any pair of sequential boundary
nodes can pass through 1, 2, 3, or 4 interior nodes. Each of these
gives rise to specific construction, shown in Figures 3.2.a, 3.2.b,

3.2.c, and 3.2.d, respectively. For convientte we will refer to
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Figurea 3.2.a, 3.2.b, 3.2.c, 3.2.d

these situations as, respectively, a right turn, a straight, a left




turn, and a U-turn. Curtis and Morrow’s rectangular networks [1] are
regular networks with only right turns and straights permitted. We
will not be so bold as to include U-turns, but will allow left turns.
All we need to determine, then, is whether the boundary curve of R
turns right, turns left, or continues straight between each pair of
sequential boundary nodes.
Section 3.2 -- Overview of Method for Determining Shape of R

First we find all the right turns; this, it will be shown, is
relatively straightforward., Since the boundary curve is simple and
closed, if there are Np right turns there must be Np = Ng - 4 left
turns. We will construct a list of Np possible sites for left turns
and then simply test all the ways to place N. left turns in Np sites.
For each combination, we will check to make sure the resultant boundary
curve is indeed closed and simple; if it is, we call the network with
this boundary curve a solution network. For a given network R, we hope
to make Np small enough that there is only one solution network.
Section 3.3 -- Finding Right Turns

it is comparably easy to find right turns; whenever there is a
right turn between sequential boundary nodes Bi and B+, the ith and
i+1st columns of the matrix L will be multiples of each other except

perhaps in rows i and i+l.
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Figure 3.3

Let R be a regular grid network with a right turn between boundary



nodes B; and Biui. The relavent portion of R is shown in Figure 3.3.
Consider Li,; and Lin,; where j is the number of any row except i or
i+l. Li; is the current that flows into the network through node Bi
if the voltage at node Bj, U{Bj}, is set to 1 and the voltage at all
other houndary nodes is set to 0. Specifically, U(B;} = U(Bj) = O.
No matter what the unpictured portion of R looks like, the voltage at
Ix will stabilize to some wvalue, U(Ix). The current flowing into the
network through nodes Bi and Bisi is given by Ohm’s Law;

I(B;) = (U(Bi)-U{Ix))g1 and

I(Bis1) = (U(Bs+1)-U(Ik))g2, but

U(Bi) = Ufaia) = 0, s0

I(i) = -U{Ix)gr and I(Bis1) = -U(Ix)g2. Thus

I(Bi} = (g2/£1)I(Bin1); that is,

Li,; = (g2/21)Lisg.
Thus, all we need to do to find right turns is find sequential columns
i and i+l of the L matrix which are multiples of each other except in
rows i and i+l. We can then easily determine Ng, the number of right
turns. Ni, the number of left turns, must be four less than Np.
Section 3.4 —— Testing Possible Networks

As a first guess we will assume that the left turns might belong
anywhere we haven’t already put a right turn. Since there are b
boundary nodes in all, there must be Np = b - Ny possible sites for
the left turns. The NL left turns and b - {Np + Ng) straights must be
distributed among these sites. There are (Np!)/(Np-NLy! ways to place
Ny left turns in Np sites.
Each candidate boundary curve dS must be tested to make sure that

it represents the boundary of some regular network. We verify that



dS never overlaps itself except to begin and end at the same point.
If dS is simple and closed, the network S is called a solution
network. Applying this algorithm to actual networks quickly shows
that we need to eliminate some of the possible sites for left turns;
we would hope to find a single solution network 8, but in fact we
obtain rather many for each L matrix.

We therefore present a criterion by which to eliminate some of
the possible sites and decrease Np. That this method works is left
entirely unproven; in fact, in one instance it will be shown not to
limit the set of solution networks to a single answer. It does,
however, work often enough to warrent contemplation.

Section 3.5 —- The PFunction F(i)

Curtis and Morrow’s [1] algorithm for finding the values of the
resistors in a rectangular network makes great use of the linear
relations that exist between columns of the L matrix; we have already
used the simplest of these to find right turns. The L matrix is

riddled with columns tha’q,gare linear combinations of sets of other
1
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columns. For example, in the L matrix for the square network shown in
Figure 3.4, the fourth column is a linear combination (muitiple) of

the fifth except in the fourth and fifth rows. The third column is a
linear combination of the fifth and sixth except in the third through

the sixth row. The column corresponding to boundary node Bz is a



linear combination of the fifth through the seventh column, except in
the second through the seventh rows. Finally, the first column is a
linear combination of the fifth through the eighth columns in all rows
of L except the first through the eighth. Let F(i) be the number of
the first column in a set of columns of which the ith column is a
linear combination. Using this notation, then, in the preceding
example F(1) = F(2) = F(3) = F(4) = 5. It should come as no surprise
that, still with reference to Figure 3.4, F(58) = F(6) = F(7) = F(8) =
9. These relations seem to revolve around the right turns between
boundary nodes Bs4 and Bs, and Bsg and Be.

Similiar behavior may be seen in regular grid networks containing

left turns. In the L matrix for the network shown in Figure 3.5,

L 31 1 BI
.- o3
ba o8y
3&‘ #3;’
T- L o B¢
031 053 L 51
Figure 3.5

F(1) = F(2) = 3, F(3) = 7, F(4) = 5, F(5) = F(6) = 7, F(7) = F(8) =

F(9) = 10, and F(10) = F(11) = F{12) = 1. Apparently F{i) is always
the number of a boundary node just after a right turn. Interestingly,
Br@) is not the boundary node after the first right turn after By,
but rather the boundary node after the first net right turn; that is,
there is exactly one more right turn than left turn between boundary
nodes B; and Brda.
Section 3.6 -- Finding Boundary Curves from F{i)

Assuming we can find F(i} for all boundary nodes B; we can

determine the boundary curve dR quite easily. To determine whether



the boundary curve between Bi and By is a right turn, a straight, or
a left turn, simply compare F{i) with F(i+1). If F{i) < F(i+l) then
the curve in question is a right turn. If F({i) = F(i+l) then it's
straight. Finally, if F(i) > F{i+l1) then the boundary curve must turn
left between node B; and Bii. However, finding F(i) for all i is
challenging if not impossible.
Section 3.7 -- Finding F(i)

We seek the number of the first coclumn in a set of columns of
which a single linear combination gives column #i. First we find
the smallest positive integer j such that column #i is at least one
linear combination of column #i+1 through column #i+j in all rows other
than row #i through row #i+}. It is gquite likely that columns #i+l
through #i+j are not linearly independent. We then look for the
lowest k such that column #it+k is not a linear combination of columns
#i+k+1 through #i+j; column #k is the first column in our set which we
cannot remove without reducing the size of the vector space spanned by
the set. We assume that F{i) = k.
Section 3.8 —— Problems with Section 3.7

The procedure outlined above works perfectly for squarish
networks, networks such as those in Figures 3.4 and 3.5 with the same
number of boundary nodes pointing in each direction. Even the

simplest of rectangles, however, causes errors. When applied to the
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netwerk shown in Figure 3.6, for example, the first part of the
procedure would discover, correctly, that column #1 is at least one
linear combination of columns #2 through #7. The procedure continues
by correctly eliminating columns #2 and #3. Obviocusly F(1) = 4, but
the procedure will remove column #4 from consideration as well,
Stated somewhat imprecisely, the problem is that since the network is
rectangular, node Bs is closer to node Bs that it ought to be. Column
#4 1s a linear combination of columns #6 and #7 and so it is removed.
The procedure in section 3.7 eventually decides on F(l) = 6 as its
{incorrect) answer.

Section 3.9 -- An Expanded Search for F(i)

It is possible to repair the procedure in Section 3.7 so that it
gives a list of possible values for F(i) which will always include the
correct answer. This ig8 an improvment; before it would give incorrect
results, whereas now it admits to its own shortcomings, The new
algorithm is as follows: first, run the old procedure, obtaining some
value for F(i}). Then remove the last column from the set, column #i+j
in the notation of Section 3.7 and column #7 in the example in
Figure 3.6. Begin again at column #i+l, eliminating all columns which
are linear combinations of those remaining in the set. Now, returning
to the example of Figure 3.6, column #7 is not being considered and
so column #4 will not be eliminated. The correct value F(1) = 4 will
be obtained. Continue by removing the highest-numbered column in the
set and then repeating the second part of Section 3.7, obtaining new

values for F(i}) until the set of columns is exhausted.



Section 3.10 -- Eliminating Sites for Left Turns

Finally we are equipped to remove more of the sites for left

turns.

sequential boundary nodes for which Section 3.9 gives only one value of

F(i).

We apply the method of Section 3.8 to all those pairs of

For some reason, here left unexplored, left turns are alwavs

undetermined; whenever a single value of F(i) is found, the boundary

curve between Bi and B 18 straight.

Thus we may remove from

consideration as sites for left turns the segments of the boundary

curve between any boundary nodes B; and B+ if F(i) is determined

uniquely by the method of Section 3.8.

Still more sites may be

eliminated if we modify Sections 3.7 and 3.9 to run counterclockwise

instead of clockwise and determine the values of F*(i), which for each

1 equals the number of the first boundary node counterciockwise from

Bi such that there is one more right turn than left turn between

boundary nodes Brygy and Bi.

Section 3.11 -- Results

shape of a regular resistor network works.

No proof has been given that this method for determining the

It has been tested,

however, on each of the networks in Figure 3.7 and several others. In

each case only one solution network, the correct one, is produced.
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However, one network, shown in Figure 3.8.a, gives two sclution
networks, the correct one and one nearly identical to it, shown in
Figure 3.8.b. It is not clear whether this difficulty is resolvable;

the L matrices for these two networks are very similiar.
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Figures 3.8.a, 3.8.b
Section 3.12 —- Questions

Can the two networks shown in Figure 3.8.a and 3.8.b be
distinguished? Why do only straight segments of boundary curve give a
unique value for F(i) or F’(i)? Does this method actually sclve all
networks or does there exist some regular network that generates
multiple solution networks that are not as similiar as those in

Figure 3.87 These questions remain unanswered.



