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1 Introduction

1.1 The Inverse Conductivity Problem

Given an object §) of unknown electrical conductivity ¥, can this conductivity be determined
through measurements made only on 92, the boundary of Q7

Applying a voltage f to dQ induces a uniquely determined potential u in the interior of 2. The
forward problem it to find the potential function u as the solution to the conductivity equation
V{7 -vu) = 0 where © = f on Q. The potential u can then be used to compute a map A of the
boundary potential f to boundary current. The inverse problem asks whether the conductivity +
can be determined from A.

This problem has an analogous discrete version that can be used to model the continuous case. In
this situation, {2 is a connected network of resistors, each assumed to be positive. The end points of
these resistors are called nodes. The nodes are divided into two sets, boundary nodes and interior
nodes. Voltages can be set and currents measured only at the boundary nodes.

In this paper I describe several resistor networks with n boundary nodes and n(n ~ 1)/2 resistors,
such that all of the resistors in the network can be determined from measurements of currents at
the boundary generated by imposed voltages. I will call these mazimal resistor networks. First
I describe the solution to the forward problem for a general resistor network and explain how the
question of existence of a maximal resistor network comes about. I then describe several maximal
resistor networks, and show how the resistors in these networks are recovered.



1.2 An Explanation of the Graphs

The graphs that accompany the text represent resistor networks with specific configurations of
boundary voltages used in recovering the values of the resistors in the network. All resistor networks
considered in this article consist of positive valued resistors and contain no internal current sources
or sinks. Boundary nodes are points in the network where current and voltage can be measured.
Boundary voltages are imposed and uniquely determine all potential and current in the network.
For each allowable set of resistor values, the variable voltages and boundary currents take on unique
values in the graph configurations shown.

All boundary nodes are marked with both voltage and current (in parenthesis) and are located on
the outer edges of the graphs. Interior nodes are marked with voltages, although these cannot be
directly measured at an interior node. Voltages not known to be zero or one are indicated with the
letter © and boundary currents not known to be zero are indicated with the letter I in parenthesis.
All line segments in the graphs represent resistors. Corresponding to each configuration, resistors
along which current flows have been draw with a thicker line than those with zero voltage drop.
Resistors meet at a node only when such a node is indicated by a dot and a voltage.




2 GGeneral Resistor Networks

2.1 The Forward Problem

If the geometry of the resistor network and the values of the resistors are known, the forward
problem can be solved. Kirchoff’s laws are used to compute the potential induced in the interior
of the network when a specific set of voltages is applied to the boundary. From this information a
matrix is computed that is a linear map of boundary voltages to boundary currents. This matrix
will be called a A matrix. The entries in the columns of the A matrix are the current at the
boundary induced by applying a voltage of 1 to one boundary node and a voltage of 0 to all other
boundary nodes. For all networks I am considering, the A map exists and is 1 to 1. The A matrix
of a resistor network can be used to find the boundary currents induced in that network by any set
of boundary voltages.

2.2 The Inverse Problem

The Inverse Problem asks whether or not the resistors in a network can be recovered from its A
matrix, assuming that the geometry of the resistor network is know. For certain geometries of
resistor networks the A matrix has been shown to contain enough information to reconstruct the
values of all resistors in the network. The algorithms used are dependent on the existence of a
configuration of boundary voltages that satisfies the following condition : m of the boundary nodes
have zero current in the configuration and at most m + 1 of the boundary nodes are not known to
have zero voltage. If such a configuration exists, the exact value of these boundary voltages can
be determined using linear equations taken from the A matrix and associated with each boundary
node of zero current.

Depending on the geometry of the network, this configuration may give enough information about
the potential in the interior of the network to allow resistor values to be computed using Kirchoff’s
aud Ohm’s laws. It does not, however, guarentee recoverability. If the number of non-zero boundary
voltages is less that m + 1, the system of equations used to compute non-zero boundary voltages is
overdetermined, and there are values in the A matrix that can be found as linear combinations of
other values. I will refer to such linearly dependent systems as relations in the A matrix.



2.3 Characteristics of the A Matrix

The question of existence of maximal resistor networks comes about by considering some special
properties of the A matrix : it is symmetric about its diagonal axis, running from the top left
to bottem right corners, and each entry along this axis is equal to the sum of all other entries
in the column or row that it occupies. Therefore, an n X n A matrix, computed from a network
with n boundary nodes, contains a set of at most n(n — 1)/2 entries that cannot be immediately
determined from other entries in the matrix, This set could be taken to be all the entries above
the diagonal axis. Since the A matrix contains at most n(n — 1)/2 independent values, this number
also determines the maximum number of resistors recoverable from the A matrix of a resistor
network with n boundary nodes. For most resistor networks the number of recoverable resistors
per boundary node is much lower, because this set of entries is itself not free of linearly dependent
relations. In that case, not all the n(n — 1)/2 entries are needed to recover the network, since some
of these entries can be deduced from other entries in the set.

For example, define a square network to a regular m X m square grid lattice with m boundary
nodes connected to one resistor each on all four sides. These networks have m? interior nodes,
giving a total of 2m(m + 1) resistors in the network and a 4m x 4m A matrix. Since the number
4mi{4m — 1)/2 of potentially independent values in the A matrix is greater than the number of
resistors inthe network, there exist relations in the A matrix in addition to the zero sum condition
and symmetry. These relations consist of linearly dependent submatrices of the A matrix. It has
been shown that a square resistor network can be reconstructed using these relations from just
2m(m + 1) well chosen entries of the A matrix.

The number of linearly independent entries in a A matrix sets an upper limit for the number
of recoverable resistors in the corresponding network. Since a maximal resistor network with n
boundary nodes would contain n{n — 1)/2 entries and be fully recoverable, the corresponding A
matrix must contain no relations. Equivalently, any valid configuration of boundary voltages and
currents of a maximal resistor network must have one more non-zero boundary voltage than zero
boundary currents, unless the boundary voltages are all zero. In the following section T will show
that A matrices without relations exist through examples of maximal resistor networks.



3 Maximal Resistor Networks

3.1 N-Fold Symimetric Maximal Networks

There are two families of planar maximal resistor networks with n—fold rotational symmetry, one
with spikes at the boundary (one resistor coming from each boundary node) and the other with
a smooth boundary {three resistors meeting at each boundary node). These networks are only
maximal if » is odd, in which case n{n — 1)/2 is a integer multiple of n. The parity of (r ~ 1)/2
effects the internal geometry of the resistor network in each case, giving four basic types of n-fold
symmetric maximal resistor networks. These are shown on the next four pages. Networks of these
types could also be generalized to include networks with even numbers of boundary nodes, but
these would not be maximal resistor networks as they would either contain too few resistors, or not
be fully recoverable.

3.2 Maximal Resistor Networks with a Mixed Boundary

There exists a network geometry with boundary nodes that alternate between spiked and smooth
that gives a maximal resistor network when the number of boundary nodesis n =dm + 2, m € Z.
This geometry does not work when n = 4m,m € Z because in this case there are relations in
the network’s A matrix and so it cannot contain enough information to recover all the resistors in
the network. This is seen from the fact that a configuration of boundary voltages exists in which
there are as many boundary nodes of zero current as there are variable boundary veltages. This is
analogous to what happens when n is even for networks considered in the previous section.



3.3 Complete Resistor Networks

A complete resistor network is a network with » nodes such that each node is joined to every other
node in the network by a resistor, so a complete resistor network contains n{n — 1}/2 resistors.
Since this number is the maximum number of resistors recoverable from the lambda matrix of a
network with n nodes, all the n nodes of a complete resistor network must be considered boundary
nodes. A complete resistor network is a maximal resistor network. These networks are non-planer
when n is greater than 4.

Complete resistor networks are fully recoverable from their A matrices for any value of n. The A
matrix is formed in the usual way, by setting the voltage at one boundary node equal to one and
the voltage at all other nodes to zero, computing the currents at each boundary node and using
these currents to form the columns of a the A matrix. In the case of a complete resistor network,
setting the voltage at all nodes except for one equal to zero blocks current from flowing across any
resisiors except the ones connected to the node with non-zero voltage. Therefore, if the non-zero
voltage is chosen to be 1, the current at each of the nodes of zero voltage is equal to minus the
resistance across the resistor that conmnects it to the node of voltage 1. This means that in the
complete case the inverse problem is immediately solved, since the resistors in a complete network
can be read directly from its A matrix.



3.4 Reconstruction of an N—Fold Symmetric Maximal Network

Here I outline a reconstruction algorithm for a spiked maximal resistor network with eleven bound-
ary nodes. Reconstruction algorithms for the other cases are analogous, as are the equations for
calculating boundary values from the A matrix.

Let % be a function that gives the voltage at each node in the network and is a valid solution to
the boundary conditions shown in the graph. If the boundary nodes are numbered as shown, then
the boundary conditions are the following :

Az qte + A7 gug + A7 aug + A7sus + Azste = —A7)
Agatta + Agatts + Asatis + Agstts + Agetic = ~Ag)

Ag oty + Ao stz + Ag 4ts + Ao ss + Aostis = —Ag
Aqo2u + Apatis + Ao atis + Avostis + Arostts = —Ao1
Aqg2uy + Ay gtz + Ay atis + A stts + Aqyste = ,

uy =1 Uy = Ug = Ug = Upo =ty =0
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The row of five boundary nodes with zero voltage and current in this configuration force all the
zero voltages shown at interior nodes. Since there is a voltage drop from 1 to 0 over the resistor
joining nodes u; = 1 and u, = 0, there is a current across this resistor, equal to the current across
the resistor joining nodes ;5 and u,3. Given the voltage drop across this resistor, #12 = 0 implies
w13 # 0. Likewise there is a voltage drop across and thus current through the resistor connecting
#,5 and u.4 = 0, and the resistor joining ua4 to uas, SO 25 # 0, and across the resistor connecting
tas and ugs. The knowledge that u;3 # 0 and uys # 0, and therefore that current flows across a
Jadder’ connecting node u; to node uaa, is central to the reconstruction algorithm.



Let v represent the set of resistors in the network, 4,, representing the boundary resistor connecting
to node u,, and 7,,4,; representing the resistor on the exterior ring of the network meeting 7,, on
the right. With all the boundary values of u for the given configuration in hand, The set J of
boundary currents can be computed from the A matrix.

L= A+ Aypua 4+ Apgus + Apgug + Agsts + A sus

Since u;3 = 0,7 = I, /u, can then be computed. This configuration of zero and non-zero boundary
voltages can be rotated around the graph, next setting ¥, = 1, and finally u,;;, = 1. In each rotation,
new non-zero boundary voltages are found from the A matrix and the ladder of current used in
reconstruction passes across a new set of resistors, so the entire set of boundary spokes, ¥, through
Y11, can be found. Once these are known, the value of u at nodes on the first ring of the network
can computed, sirce Upmyyy = Uy — Ly/Ym- When the boundary spike resistors and resistors on
the outer ring are known, the problem is analogous to the original situation; the first ring of inner
spokes can be considered a new boundary on which all voltages and currents are deduced from
known values, and values of 4 in the interior of the network can be calculated just as were the
exterior values,
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3.3.1 Spiked network with 11 boundary nodes, a prototype for a general spiked
maximal network with n = 4m 43 boundary nodes, m € 2. These networks have
(n —3}/4 rings and a central node.



3.3.2 Smooth network with 11 boundary nodes, a prototype for a general smooth
maximal network with n = 4m+3 boundary nodes, m € Z. These networks have
{n+1)/4 rings
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3.3.3 Spiked network with 13 boundary nodes, a prototype for a general spiked
maximal network with n = 4m +1 boundary nodes, m € Z. These networks have
(n —1}/4 rings



1(I1)

3.3.4 Smooth network with 13 boundary nodes, a prototype for a general smooth
maximal network with n» = 4m + 1 boundary node, m € Z. These networks have
(n —1)/4 rings and a central node.
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3.3.5 A maximal resistor network with 10 boundary nodes, a prototype for a general
mixed boundary maximal resistor network with n = 4m + 2 boundary nodes,
m € Z. These networks have (n — 2)/4 rings and a centeral node.
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3.3.86 A resistor network with 12 boundary nodes. This network is not fully recover-
able, as may be seen from the marked boundary values. No resistor networks
of this type, with n = 4m + 2 boundary nodes, m € 2, are fully recoverable,
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3.3.7 A complete resistor network with 8 boundary nodes, a prototype for a general
complete resistor network with n boundary nodes.
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