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Abstract

This paper reports the findings in a series of experiments to deter-
mine the conductance of a physical network. The procedure is outlined
by Curtis and Morrow in [1], [2]. In the experiments, we have tested
Curtis and Morrow’s reconstruction schemes for the network as well as
the Dirichlet to Neumann map (ΛΓ map). We also verify the unique-
ness of the Dirichlet solution. We find various properties of the ΛΓ
matrix, and new techniques to reconstruct the network as well as the
ΛΓ map.
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I. Introduction

A. Physical Problem

The physical problem of interest is to compute the conductance of a two
dimensional object. Physically, there isn’t a definite way to measure the
conductance of a two or higher dimensional object. In order to measure the
conductance of a piece of material, one would use approximation techniques:
First, subdivide the object into small square regions and approximate each
region by a resistor network. Second, determine the conductance of the
resistor network. Third, use the resulting conductance to approximate that
of the square region. Finally, obtain an approximation to the conductance
of the two dimensional object by averaging all square regions. However,
there are some subtle problems to be addressed. For example, how can
one combine the resulting conductances of a discrete network to formulate
the conductance for a continuous region. In this paper we are not going
to deal with these subtle problems. We report all the findings in trying
to reconstruct the physical network. Our reconstruction scheme is based
on Curtis and Morrow’s alogrithm in [1]. The remaining sections of this
introduction outline how the reconstruction alogrithm was developed.

B. Continuous Problem

In [1], Curtis and Morrow pointed out that the alogrithm to find the conduc-
tance of a physical network originated from the continuous inverse problem
related to γ-harmonic functions. The continuous inverse problem is: Given
the Dirichlet to Neumann map of a γ-harmonic function, u, on a region Ω,
find the scalar function γ.
The γ-harmonic function u is the potential function on Ω, where Ω is the

region on which the conductance is to be determined. γ is a positive scalar
function on Ω; it represents the conductance of the region. A γ-harmonic
fuction, u, in Ω is the fuction that satisfies γ∇2u = 0 on Ω. Curtis and
Morrow defined the Dirichlet to Neumann map, ΛΓ, as the map that takes
the data from the Dirichlet problem to that of the Neumann problem. The
Dirichlet problem of γ-harmonic function is: find a γ-harmonic function u
on a domain Ω, if its values at the boundary of Ω are given. The Neumann
problem provides the normal derivative of a γ- harmonic function u, and asks
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to find u on Ω.
One special feature of the Dirichlet and the Neumann problems is the

uniqueness of their solutions. To prove the uniqueness of the Dirichlet prob-
lem, one first needs to show that if u is a γ-harmonic function on Ω and
u = 0 on ∂Ω, and γ is a positive scalar function, then u ≡ 0 on Ω. Then,
one will use a proof by contradiction to show that if u and v are distinct
solutions to the same Dirichlet problem, then u−v = 0 on Ω and by the fact
proven at the beginning, one can conclude that u ≡ v over Ω and that is a
contradiction.
With these definitions, we can now move on to defining the forward and

inverse problem associated with the continuous case. The forward problem
is: Given a γ-harmonic function on a domain Ω in Rn, and a positive scalar
function γ, find the Dirichlet to Neumann map. The inverse problem is:
Given the Dirichlet to Neumann map and the domain Ω in Rn, find the
scalar function γ.

C. Discretization of the Continuous problem

Curtis and Morrow’s alogrithm to recover the conductance of resistors in a
resistor network is based on discretizing the forward and inverse continuous
problem stated above. [1] To discretize the continuous problem, one needs to
define the equivalance of γ∇2u = 0 in the discrete case. Curtis and Morrow
suggested the use of finite difference approximation method. Suppose the
following is a physical network which approximates the rectangular region in
the continuous case.

Figure 1. Schematic diagram for discretizing the continuous region.
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Applying Finite difference method, we can approximate γ∇2u = 0 by
(γux)x+(γuy)y = 0. Inspecting figure 1 in the previous page, we realize that
γux, and γuy can be rewritten as:

γux|A = γ(A)[u(E)− u(p)]/h

γux|C = γ(C)[u(p)− u(W )]/h

γuy|B = γ(B)[u(N)− u(p)]/h

γuy|D = γ(D)[u(p)− u(S)]/h

for points A, B, C, D. where u(p) is the potential at point p, and h is the
length between p and any neighboring node.
Applying the definition of derivatives in vector calculus again, we obtain

the following expressions:

γ(ux)x =
1

h2
(γux|A − γux|C)

γ(uy)y =
1

h2
(γuy|B − γuy|D)

After substituting the expression for γux at point A, B, C, and D, we get
the following expressions:

(γux)x =
1

h2
[γA(uE − up) + γC(uW − up)]

(γuy)y =
1

h2
[γB(uN − up) + γD(uS − up)]

Now, we can write the condition for γ-harmonicity (Div(γ∇u) = 0) in
the discrete case as

γA(uE − up) + γB(uW − up) + γC(uN − up) + γD(uS − up)] = 0

After staring at it for a while, we can put the discrete condition in a more
condensed form.





∑

q∈itN(p)

γ(pq)



u(p) =
∑

q∈N (p)

γ(pq)u(q)
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Moreover, it is very interesing to note that the previous expression is
exactly Kirchhoff’s current law at a node when it is rewritten in a sightly
different form:

∑

q∈N (p)

γq(uq − up) = 0⇒
∑

Current enter a node = 0

where N(p) are the neighboring nodes of p.
Having discretized the condition for γ-harmonicity, we can now define

the discrete forward and inverse problem. The discrete forward problem is:
Suppose a potential function u satisfies

∑

q∈N (p)

γq(uq − up) = 0

where N(p) are the neighboring nodes of p, for all nodes in the physical
network. Given an n × n physical network with know conductance γ, find
the Λ matrix - the discrete approximation of the ΛΓ map. The discrete inverse
problem is: Given the Λ matrix of a physical network, find the conductance
of the resistors inside the network.

D. Construction of the Physical Network

To test the validity and practicality of applying of the reconstruction algo-
rithm of Curtis and Morrow for an n×n resistor network, we constructed a
working model of such a network. We will refer to the Dirichlet to Neumann
map for Ωp as ΛΓ.
Our network, henceforth referred to as Ωp, was a 4×4 network, so its

construction required 40 resistors (there are 2n(n + 1) resistors in an n×n
network). We chose 100 ohm(Ω) resistors, each rated at 5% tolerance. Thus
we expected to have approximately uniform conductances throughout our
network. Of course, the resistors did not provide uniform resistance, and, in
fact, were not all within their rated tolerance. A diagram of Ωp appears in
Figure 2, with resistances (recall, γ = 1

R
) printed where they occur. Note

also that the boldface numbers that appear on the boundary of the network
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are simply the numbers assigned by us for easy labeling.

4 3 2 1

| | | |
102.7 104.6 102.5 102.0

| | | |
5 − 106.8 −−+−− 101.3 −−+−− 104.8 −−+−− 105.8 −−+−− 102.1− 16

| | | |
106.7 102.5 105.7 101.9

| | | |
6 − 104.1 −−+−− 104.7 −−+−− 105.5 −−+−− 104.5 −−+−− 104.6− 15

| | | |
107.8 107.9 102.2 103.7

| | | |
7 − 106.7 −−+−− 103.3 −−+−− 106.1 −−+−− 102.6 −−+−− 101.8− 14

| | | |
102.1 104.9 105.3 106.3

| | | |
8 − 101.5 −−+−− 103.3 −−+−− 109.4 −−+−− 103.7 −−+−− 102.0− 13

| | | |
106.2 102.4 102.9 104.3

| | | |
9 10 11 12

Interior values are in ohms.

Boundary values are labels for the nodes.

Figure 2. The physical network, Ωp.

The network was built on a copper-clad circuit board, upon which 60
nodes were etched. Between each node a pad of copper was left to facilitate
the later addition of capacitors (or diodes, transistors, etc.), either in series
or parallel with the resistors. Four holes were drilled in each node, and the
resistors were soldered into them to insure connections with low resistance.
The power supply consisted of six 1.5 V flashlight batteries connnected in

series, providing a total potential differenceof about 9 V. The negative pole
of the battery was connected directly to the ground of the network, while the
positive side was connected to a 22 kΩ rheostat. This allowed us to vary the
voltage across Ωp from ≈ 9.02 V to ≈ 130µV .
The ground lead was connected to 15 alligator clips so that all but one

of the boundary nodes of Ωp could be grounded at the same time (uq = 0,
where uq is the potential at node q ∈ ∂Ωp). The positive lead was attached
to a single alligator clip, so that it could be moved as different columns in
Λγ were measured.
Metering was done using an Eico ammeter, Circuitmate voltmeter, and

at times a Fluke 123 meter. The Eico was used primarily for measuring
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boundary currents, and provided measurements to the nearest 10−5 ampere.
However, it was also found to have a systematic error on the order of −7%.
The Circuitmate meter gave readings to the nearest 10−6 volt, with assumed
high accuracy (we had no way of testing its correctness). The Fluke’s range
was similar to that of the Eico instrument, but its systematic error appeared
greater, and few measurements were made with it.
However, systematic error is relatively unimportant in this application.

If all of our readings were off by a common factor, it would be elementary to
repair them. In our experiment, though, the numbers were inconsistent with
each other, so no quick repair algorithm was applicable. More details about
reconstructing the Λ matrix are given in Section IV.A.

II. Forward problem

In this section, we discuss the forward problem associated to a physical re-
sistor network. First, we report the results of testing the uniqueness of the
Dirichlet and the Neumann solution in the discrete case. Second, we show
our finding about the insensitity of the lambda matrix.

A. Uniqueness of the Dirichlet solution

In the introduction, we have shown that the solution to the Dirichlet and the
Neumann problem is unique mathmatically. In this section, we discuss the
result of the experiments conducted to verify the uniqueness of the Dirichlet
problem.
The experimental procedure involves three steps:

1. We connect the 4× 4 model network constructed according to section
I.D to an arbitary voltage input, and then measure the potential at
each interior node.

2. We use the forward solver - a computer program that solves the Dirich-
let and Neumann problem - to compute the theoretical potential of the
network.

3. We compare the two sets of data to determine whether the physical
measurements agree with the predicted data.
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The data are reproduced at Appendix A. From these experimental data,
we find the measured values agree with the predicted values up to the last
digit of the meter’s measurement. Thus, we believe that the solution to the
Dirichlet problem is unique.
We were not able to test the uniqueness of the Neumann solution, since

that kind of experiment involves using a constant current source, and this
kind of input source is not availible to us.

B. Insensitivity of Lambda Map

We performed an experiment to show how independent the Λ-matrix is from
the function of conductances, γ, on a network Ω. We created a hypothetical
resistor network, Ωh, with certain beginning conductances, and sent it to our
forward solver to obtain the Λ matrix, ΛΓ. We then altered some of the the
values of γ, and recomputed ΛΓ. The differences in the two results were barely
noticeable, until a great deal of the network was changed. The graphical
results of alterations made to a 15×15 network are given in Appendix C.

III. Physical Measurements

Since one of our goals was to determine the values of the conductances, γ,
of the physical network, we had to create a Λ matrix from physical measure-
ments around the boundary of the network. Taking all the measurements for
the Λ matrix associated with our 4 × 4 network, Ωp, would require (4 · 4)

2

(= 256) separate measurements. Each measurement involves moving the
power and meter leads. We found this to be prohibitively time consuming,
as doing the measurements once took almost three hours. Also, as will be
shown in section IV of this paper, these measurements lacked the precision
necessary to form a real Λ matrix. Tables of our measurements, as well as
the computed ΛΓ are listed in appendix B.
To save time, we implemented a method to reconstruct the Λ matrix from

a reduced parameter set, as described in [2]. This parametrization allowed
us to make fewer measurements — a total of 2n(n + 1), (one measurement
for each γ ∈ Ωp). Hence, for our network, we only needed to make 40
measurements to fill a parameter set. The entries we chose were as follows:
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

•= parameter location.
◦ = empty location; to be computed from parameters.

Figure 3. Parameter entries in partial Λ matrix.

To increase the precision of our measurements, we took a small statistical
sampling of each boundary current measurement. That is, we measured the
current at each node for at least ten different applied voltages. We then
used linear regression on the ten values to interpolate a value for one volt.
For example: To find the (5,1) entry in the Λ matrix, we grounded nodes
2 through 16, (set uq = 0 for q ∈ ∂Ωp), and connected the positive lead at
node 1 (set u = κ). Then, by adjusting the rheostat on the power supply,
we varied κ between about 9 volts and .1 volt. The current (I) was then
measured at node 5 for ten different values of κ, and the ten values were sent
to a linear regression routine to find I for κ = 1.0.
However, even with the extra digits of precision that this method offered,

our numbers were not consistent enough to provide a parameter set for ΛΓ.
In section IV.A, we explain why this is the case, and what level of accuracy
is necessary to create a Λ matrix from a given set of parameters.
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IV. Inverse Problem

A.1 Reconstruction of Λ Matrix from Parameters

It is proven in detail in [2] that a complete Λ matrix for an n×n network
can be constructed from 2n(n + 1) carefully chosen parameters. This is
the method we used to reconstruct ΛΓ. In summary, by solving sytems of
equations formed from certain entries of the parameter set, one can take
linear combinations of corresponding rows to fill in missing entries in the
matrix.

N W S E

N G A B C

W AT H E D

S BT ET I F

E CT DT F T J

Figure 4. Block structure of Λ. This diagram is reproduced from [2], to
preserve notation.

We will refer to different blocks of the Λ matrix for our Ωp network by the
following scheme: Break the matrix up into 16 sections, by taking groups of
n rows and n columns. By the definition of the Λ matrix in [2], each one of
these n×n blocks contains the value of the current flowing out of the nodes
on one side of the network (N,S,E,W) when u = 1.0 at the nodes on another
face. For example, the values in block A are the currents at the boundary
nodes along the north side of Ωp (Ai,j = Ij, i = (n+ 1)..2n, j = 1..n), when
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uk = 1 for k ∈ [n+ 1, 2n] and uk = 0 for k /∈ [n+ 1, 2n]. Figure 4 illustrates
this block structure. Note that each block below the main diagonal is the
transpose of the corresponding block above it (A and AT , for example), and
the blocks on the main diagonal (G, H, I, J) are symmetric n×n matrices.
Now, we call this “blocked” lambda matrix Λ.
Since the blocks in Λ represent portions of ΛΓ, we must clarify the index-

ing of the two matrices. First, it is clear that Λi,j = ΛΓi,j . However, within
Λ, the blocks are indexed differently, just as if they were smaller matrices
superimposed over the larger one. Hence, for example, Λ1,1 = G1,1, and
Λ4,12 = B4,4.

8 4 4 3 • 2 2 2 • • • • 1 1 1 •
4 8 7 3 • • 2 2 • • • • 1 1 • •
4 7 8 3 • • • 2 • • • • 1 • • •
3 3 3 3 • • • • • • • • • • • •
• • • • 8 3 3 3 3 3 3 3 3 3 3 •
2 • • • 3 8 5 5 5 5 5 5 5 5 • 4
2 2 • • 3 5 8 5 5 5 5 5 5 • 5 4
2 2 2 • 3 5 5 8 5 5 5 5 • 5 5 4
• • • • 3 5 5 5 8 5 5 5 5 5 5 4
• • • • 3 5 5 5 5 8 5 5 5 5 5 4
• • • • 3 5 5 5 5 5 8 5 5 5 5 4
• • • • 3 5 5 5 5 5 5 8 5 5 5 4
1 1 1 • 3 5 5 • 5 5 5 5 8 5 5 4
1 1 • • 3 5 • 5 5 5 5 5 5 8 5 4
1 • • • 3 • 5 5 5 5 5 5 5 5 8 4
• • • • • 4 4 4 4 4 4 4 4 4 4 8

• = members of parameter set.
Z = the number of the stage at which the corresponding entry is computed.

Figure 5. The order of reconstruction of the Λ matrix from parameters.

Our program to reconstruct ΛΓ from the parameter set illustrated in figure
3 uses the following order, also illustrated in figure 5:
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1. Calculate all values above the main antidiagonal in block C, and copy
their values to CT .

2. Calculate values above the main diagonal in A; copy these to AT .

3. Fill in the values for row n+1 above the main diagonal of Λ, as well as
row n below that diagonal. Copy these values to their corresponding
locations across the diagonal.

4. Fill in the values for column 4n above the main diagonal, as well as
column 1. Copy these values symmetrically also.

5. Finish filling in blocks D, E, H, F , and J above the main diagonal.
Copy their values to their respective transpose matrices.

6. Fill in block I above the main diagonal and copy the values to the lower
part.

7. Fill in the last entries of G, for i 6= j, and i, j /∈ [1, n].

8. Finally, for each row, i, the diagonal entry is found by summation:

Λi,i = −
4n
∑

j=1

j 6=i

Λi,j (1)

A.2 Requirements for Parameters

It is shown by Curtis and Morrow in [2], that there are several determinental
conditions that must be met by the parameter set to insure that they will
yield a valid Λ matrix upon reconstruction.
Specifically, the determinants of the small matrices used to calculate the

non-parameters must have the Right Sign, which is defined as follows:
Definition 1: A determinant of a n×n matrix A in ΛΓ is said to have

the Right Sign (RS) if and only if:

1. det(A) < 0 for n ≡ 1, 2 mod 4.

2. det(A) > 0 for n ≡ 0, 3 mod 4.
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The measured parameters from Ωp yielded some determinants that did
not have the RS property. Namely, the 3×3 matrix with upper left compo-
nent at ΛΓ2,12 (call this small matrix M1) had a negative determinant, when,
by the Right Sign condition, it should have been positive. Likewise, the
partially computed 3×3 matrix at ΛΓ6,2 (call this one M2) had negative de-
terminant. These two matrices could be adjusted, without prior knowledge
of the actual values desired, so that their determinants had the Right Sign
property. When this was done, the Λ matrix was much closer to a viable
ΛΓ, computed from the forward solver. However, it was not good enough to
allow a reconstruction of Ωp.

A.3 Repair Methods for Ωp

As mentioned before, Curtis and Morrow give a procedure in [2] to construct
a set of parameters for the Λ matrix, which we have followed. They give
an order for filling in the actual parameter set by which one checks the
determinants of several matrices as the parameters are added to the set. We
did not use this check system, so our parameters are not quite consistent
with each other—hence, our ΛΓ is invalid.
However, the method of Curtis and Morrow gave us a procedure for re-

pairing bad determinants in our reconstructed matrix. As the parameters
are placed in block A, it is filled in starting from the lower left corner, and
proceeding diagonally up and right, so that A1,4 is filled in last. Hence, the
last parameter to be checked in M1 is the component in the upper right cor-
ner. So by sdjusting its value, det(M1) can easily be given the Right Sign.
We applied this technique to our parameters and found an improvement in
our reconstructed Λ matrix. Likewise, the last parameter to be placed in
M2 is the upper right entry. By adjusting this number, we should be able
to correct det(M2). However, we found that it was necessary a to change a
different parameter than expected to correct the sign of the determinant for
M2. There appears to be no dependable way to repair a faulty parameter
set without checking determinants as the parameters are added (as in [2]),
or previous knowledge of the correct values. Hence, it was impossible for
us to create a valid Λ map for Ωp, no matter how carefully we made our
measurements. Figure 5 illustrates the changes made to the matrices, and
the corresponding changes in the determinants.
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Location of Measured Repaired
Submatrix Parameter Value Value Difference det(Mn)

M1 (2,12) -1.3614e-4 -1.3704e-4 -9.0e-7 ≈6.99e-17
M2 (5,2) -3.5483e-4 -3.3162e-4 2.321e-5 ≈6.68e-12

Table 1. Comparison of repaired parameter values with measured ones.

A.4 Sensitivity of Parameters

In order to construct a valid Λ matrix from a parameter set, the set must be
internally consistent. That is, the experimentally measured parameters must
be close enough to the values in an actual Λ matrix. This can be checked (as
shown in [2]) by examining the determinants of certain submatrices of the
parameter set. We did an experiment to directly demonstrate how precisely
the parameters must match in order to construct a viable Λ matrix from
them.
Beginning with a parameter set with six digits of accuracy, we constructed

a Λ matrix, and used it as the correct matrix to compare future ones to.
We then removed on digit of precision, and reconstructed the Λ-map. We
repeated this until there was only one digit left beyond the decimal point.
As demonstrated by the graphs in Appendix C, this is when the Λ matrix
became nearly unrecognizable.
It is clear from these results, that at least three signicant figures are nec-

essary to create a valid parameter set. The parameters that we measured, du
to experimental error, rarely had two significant figures of accuracy. Hence,
it was impossible to reconstruct a valid Λ matrix.

B.1 Inverse Solver

An inverse solver is a computer program that computes the solution for
the discrete inverse problem - see introduction. It takes a Λ matrix - the
discrete approximation to the Λγ map - and computes the conductance of its
corresponding network. The basic alogrithm for the computation is described
by Curtis and Morrow in [1]. In this section, we describe the three versions
of our inverse solvers, and discuss the techniques used in each version.
The first version of our inverse solver was an implementation of Curtis

and Morrow’s reconstruction scheme. This scheme reconstructed the network
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from a corner and went inward. The figure below illustrates stage 3 of the
reconstruction of a 7× 7 network.

Figure 6. Illustration for reconstruction of stage 3 of the 7× 7 network.

In the figure above, the dashed line represents resistors whose conduc-
tances are to be computed at this stage. All the conductances to the right
of the dashed one have been computed in the previous stages. Therefore,
we can use them to compute the resistor that is dashed. We also note that
at any particular stage, k, there are k level of resistors. Each level of resis-
tors consists of one set of vertical and one set of hortizontal resistors. The
reconstruction scheme for stage k can be divided into 5 steps.
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1. Solving an system of linear equations.

(Ik + α1I4n + · · ·+ αkI4n−k+1)j = 0

where j ∈ [1, 4n] and j 6= {1, 2, . . . , k, 4n, 4n− 1, . . . , 4n− k + 1}.

2. Compute the current entering the nodes at the top of the network by
taking linear combinations of the columns of the Λ matrix.

3. Compute the voltage at the first level nodes right below the top nodes.

4. Compute the conductance of the resistor at the end of level 1.

5. Repeat the step 2 to 4 for the next level of nodes and resistors.

Following this scheme, after n stages, we have computed the conductance
for half of the network. Then, we would rotate the network by 180 degree
clockwise, and repeat the scheme. At this point, we have computed all the
conductance over the network. The major disadvantage to this scheme is
high inaccuracy in the last n/2 stages of calculation. We believe there are
two reasons for the inaccuracy. First, since this method depends on all
previous calculations, small errors at each stage accumulate and form big
errors. Second, the range of the solution to the linear system becomes very
large at stage n/2 or above. The magnitude of the solution starts around
1.00 volt and grows to 4k volt at stage k calculation. For example, the range
for the stage 7 calculation of a 10 × 10 network is [1, 16384]. With such
a large range, one cannot accurately compute any current at the boundary
nodes when taking linear combinations.
The second version of our inverse solver used four rotations instead of

two. This eliminated the necessity of computing a majority of the resistors
in the last n/2 inaccurate stages. This version of inverse solver turnd out to
be fairly accurate. The experimental data showed that for a 5× 5 network,
the maximum error was about 10−13. There are several drawbacks associate
with this version of inverse solver. For example, this scheme didn’t take
advantage of the previous computed conductance at a nearby corner. This
method also didn’t allow the variation for the set of equations used to solve
the linear system at Step 1. This last suggestion turned out to be a very big
improvement in the reconstruction scheme - see next section for detail.
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The third version of our inverse solver implemented both the variation
of system of equations in Step 1 and the usage of previous computed con-
ductance for later stage calculations. The variation of system included two
parts:

1. Statregically moving the nodes where the solution to the linear system
was for.

2. The change in system of equations used to solve the linear system.

This version was a very good inverse solver. From the experimental data,
we believe this version of the inverse solver can work well on networks up to
15 × 15 with 7% maximum error. We have reproduced some experimental
data in Appendix D.

B.2 Systems of Equations

A system of equations is a set of n equation sets. Each equation set is used
to solve the linear system at the beginning of each stage. One of the biggest
improvement to the accuracy in s recovering the conductance of a resistor
network is being able to choose the right system of equations to solve the
linear system in step 1 in the outline above. Experimental data showed that
by choosing the right set of equation, the relative error of the recostruction
reduced from 6.0 · 10−6 to 7.8 · 10−8. See appendix E for the summary of
the worst errors for 4 different systems of equations. The questions arising
from the experiment are: What make choosing the right set of equations so
important in the reconstruction scheme, and how does one choose the right
systems of equations? In this section, we have made an effort to answer these
questions.

Recall the steps of reconstruction method above, the very first step at
stage k calculation is to solve a k × k linear system. All the calculations,
thereafter, depend on the solution to this linear system. Thus, the accuracy
of the solution is very significant to the accuracy of the overall reconstruction.
The main reason why choosing the right system of equations is so important
is it makes the solutions to the linear system more accurate. The rows of
this system are a subset of an overdetermined 2n × 2n matrix. Each row
corresponds to a boundary node at the left or bottom edge of the network.
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Therefore, we have a lot of choices for the rows, but some combinations of
rows produce singular systems (i.e. no solution.) For example, choosing the
equations corresponding to two corner nodes will result in a singular k × k
matrix. The remaining question is how to choose the right set of equations.
Since there is no previous theory or conjecture about the best set of equations,
we started out using a purely brute force method. We created two versions of
equation testers for this purpose. Both testers could test systems for network
that is 10 × 10 or smaller. One version generates all combinations at each
stage using the nodes at the left side of the network. For example, at stage 3
of the reconstruction for a 5× 5 network, the version one tester will test all
combinations of 3 from the set of 5 nodes on the left side of the network. The
other version does bascially the same thing as the first version, but instead of
taking combinations of the equations on only one side of the network it takes
equations associated to nodes at both the left and the bottom side of the
network. In appendix F, we have reproduced the best systems of equations
for different sizes of networks. For both versions of testers, the criteria to
select the best set of equations at any stage is the Condition number, ZCond,
returned from the DGECO routine in the Fortran 77 Linpack library. When
DGECO is asked to solve Ax = b, it returns an approximation, z, to the
solution, and a condition number, ZCond. This condition number, ZCond,
tells how good z approximates x. Mathematically, the estimated condition
number for the solution of a linear system is

Condition number =
‖x− z‖

‖x‖
,

and it is the reciprocal of the Zcond returned by the Linpack routine. How-
ever, the above formula requires prior knowledge to the solution x. Thus, we
must use some other method to approximate the condition number.
Let’s suppose z is an approximation to Ax = b. Then, subtracting both

sides of the equation by Az will result,

Ax− Az = b− Az

A · (x− z) = b− Az

(x− z) = A−1 · (b− Az)

At this point, we need to choose a norm for A that has the property: ‖Ax‖ ≤
‖A‖‖x‖. (The Compatible Norm is one.) Applying the property just stated,
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we have
‖(x− z)‖ = ‖A−1 · (b− Az)‖ ≤ ‖A−1‖ · ‖(b− Az)‖

Now, divide the left side of the inequality by ‖Ax‖, and the right side of the
inequality by ‖b‖.

‖(x− z)‖

‖Ax‖
≤
‖A−1‖ · ‖(b− Az)‖

‖b‖

Since, ‖Ax‖ ≤ ‖A‖·‖x‖, we can write ‖A‖·‖x‖ instead of ‖Ax‖ in the above
and still preserve the inequality.

‖(x− z)‖

‖A‖‖x‖
≤
‖A−1‖ · ‖(b− Az)‖

‖b‖

Multiplying both side of the inequality by ‖A‖, we have arrived at the upper
bound of the Condition number.

‖(x− z)‖

‖x‖
≤ ‖A‖ · ‖A−1‖ · (

‖(b− Az)‖

‖b‖
)

By repeating the above process with slight modification in steps, we will
obtain another inequality for the lower bound of the Condition number:

1

‖A‖ · ‖A−1‖
· (
‖b− Az‖

‖b‖
) ≤

‖(x− z)‖

‖x‖

Rearranging some terms, we finally get both the upper and lower bound
for the condition number without requiring any prior knowledge of the real
solution x.

1

‖A‖‖A−1‖
· (
‖Az − b‖

‖b‖
) ≤

‖x− z‖

‖x‖
≤ ‖A‖‖A−1‖ · (

‖Az − b‖

‖b‖
)

The DGECO routine in the Fortran Linpack library probably use some-
thing similar to compute the inverse of the condition number stated above.
After we tested different sized networks for the best system of equations,

we discovered a pattern that allowed us to pick a system of equations that
is close to the best system. The pattern is outlined as follows: Suppose we
have an n × n network, and the boundary nodes numbered from 1 to 4n,
starting at the upper right corner. See figure 2 for an example. We always
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pick node n + 1. Starting from the second stage to the (n/2 - 2) stage, we
will pick node 3n − 1 along with node n + 1. ¿From the third to the (n/2 -
2) stage, we pick the rest of the nodes by dividing the interval from n+ 1 to
3n− 1 into k − 1 segments, where k is the stage number, and pick the node
corresponding to the endpoints of the segments. From the (n/2 - 1) stage
on, we pick node 3n instead of node3n− 1, and also pick either node 2n− 1
or 2n along with node n + 1. Beside the three nodes, we pick other nodes
alternating from node n+ 1 forwards and node 3n backwards.
We have used this pattern to create the system of equation for a 10 ×

10, a 15 × 15 and a 20 × 20 network. When comparing the results of the
reconstruction for these networks, we have found our system is always better
than the traditional system - which is form by taking successive nodes starting
from the 1st one in the left edge.

V. Conclusion

After testing all the phases in reconstructing the physical network, we have
found Curtis and Morrow’s algorithm to reconstruct a resistor network is
extremely hard to implement, given the resources at our disposal. We have
proven the uniqueness property of the discrete forward problem. We have
shown that the Λγ map is extremely insensitive to changes in the region of
interest. In the reconstruction process, we learned new techniques to imple-
ment the inverse solver, as well as the program to reconstruct Λ matrices.
We also found that reconstructing a Λ matrix from a given parameter set
is extremely difficult - almost impossible. Although we failed to reconstruct
the physical network from experiments, with more and better resources, we
believe the reconstruction is possible.
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Appendices

I. Appendix A

Table 2. Measured values vs. computed values for the potential at the
interior nodes, when boundary node 1 is set to 6.29 volt and node 2 to 15 is
grounded.

Node : Measured value Computed value
1 1.925 1.853189040
2 0.639 0.624769945
3 0.239 0.229750352
4 0.083 0.081268028
5 0.655 0.639041826
6 0.439 0.431407467
7 0.233 0.223877258
8 0.096 0.092798643
9 0.236 0.235501981
10 0.230 0.225770220
11 0.150 0.146354888
12 0.071 0.067450833
13 0.083 0.080941138
14 0.097 0.093722088
15 0.070 0.068544525
16 0.035 0.033693801
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II. Appendix B

Table 3. Physical and computed measurements for the Λ matrix.
• The followings are the physical measurements (in mA):

-41.20 6.00 2.04 0.74 0.74 0.81 0.61 0.30 0.29 0.60 0.80 0.73 0.70 2.06 5.69 17.60

5.74 -39.2 6.37 2.17 2.16 2.03 1.32 0.62 0.60 1.15 1.32 0.86 0.82 1.99 3.85 5.80

2.09 6.44 -38.3 6.00 6.00 3.73 1.97 0.83 0.78 1.31 1.09 0.61 0.59 1.27 1.98 2.00

0.75 2.17 5.64 -41.3 17.8 5.90 2.05 0.73 0.66 0.82 0.59 0.31 0.30 0.61 0.84 0.72

0.75 2.17 5.63 17.9 -41.3 5.90 2.05 0.73 0.68 0.82 0.59 0.31 0.30 0.61 0.84 0.72

0.85 2.08 3.78 6.00 6.00 -38.2 6.70 2.10 1.97 2.00 1.27 0.63 0.60 1.14 1.34 0.82

0.62 1.34 1.98 2.20 2.07 6.70 -38.00 5.90 5.60 3.75 1.94 0.85 0.82 1.33 1.13 0.59

0.31 0.63 0.83 0.73 0.73 2.09 5.90 -40.40 17.00 5.90 2.03 0.75 0.72 0.84 0.61 0.30

0.30 0.61 0.80 0.71 0.70 2.02 5.37 17.30 -38.90 5.70 1.96 0.73 0.69 0.81 0.58 0.29

0.62 1.17 1.33 0.90 0.84 2.01 3.78 5.90 5.60 -37.70 6.50 2.16 2.07 2.03 1.29 0.60

0.82 1.34 1.10 0.60 0.60 1.28 1.95 2.10 1.95 6.50 -37.40 5.90 5.33 3.75 1.93 0.79

0.74 0.87 0.62 0.31 0.31 0.63 0.85 0.80 0.72 2.14 5.90 -40.70 17.30 6.10 2.08 0.72

0.71 0.83 0.59 0.30 0.30 0.60 0.81 0.72 0.69 2.05 5.60 17.30 -39.70 5.90 1.99 0.69

2.10 2.04 1.29 0.62 0.62 1.14 1.34 0.85 0.81 2.02 3.76 6.10 5.90 -38.30 6.60 2.02

5.80 3.90 2.00 0.85 0.85 1.35 1.13 0.61 0.58 1.29 1.93 2.08 2.10 6.60 -38.30 5.90

17.80 5.58 2.02 0.73 0.72 0.82 0.59 0.30 0.28 0.59 0.79 0.72 0.69 2.02 5.90 -40.30

• The followings are the computed values (in mA): • Note: the following values have been truncated.

-40.22 5.81 2.08 0.77 0.74 0.87 0.63 0.31 0.31 0.65 0.86 0.76 0.76 2.22 5.91 17.47

5.72 -37.8 6.44 2.25 2.15 2.13 1.36 0.63 0.64 1.22 1.39 0.88 0.88 2.14 4.03 5.95

2.06 6.47 -37.5 6.02 5.76 4.04 2.07 0.84 0.86 1.41 1.16 0.63 0.63 1.35 2.05 2.14

0.76 2.25 6.02 -41.1 17.4 6.18 2.22 0.76 0.78 0.91 0.65 0.33 0.33 0.66 0.90 0.79

0.74 2.18 5.81 17.6 -40.4 5.97 2.14 0.74 0.75 0.88 0.63 0.32 0.32 0.64 0.87 0.76

0.87 2.15 4.06 6.23 5.95 -38.8 6.68 2.16 2.21 2.15 1.37 0.65 0.65 1.22 1.42 0.90

0.63 1.37 2.08 2.23 2.13 6.68 -38.00 5.99 6.13 4.12 2.12 0.90 0.90 1.44 1.20 0.65

0.30 0.63 0.84 0.76 0.73 2.15 5.95 -40.4 17.6 5.87 2.13 0.76 0.76 0.87 0.62 0.32

0.31 0.64 0.86 0.78 0.75 2.19 6.08 17.6 -40.4 6.00 2.18 0.78 0.78 0.89 0.64 0.32

0.64 1.22 1.41 0.91 0.87 2.14 4.10 5.87 6.01 -38.8 6.75 2.28 2.28 2.18 1.39 0.67

0.85 1.39 1.15 0.64 0.61 1.35 2.09 2.11 2.16 6.70 -37.9 5.93 5.93 3.97 2.05 0.88

0.75 0.88 0.62 0.33 0.31 0.64 0.88 0.76 0.77 2.26 5.94 -40.3 17.7 5.92 2.15 0.78

0.76 0.88 0.63 0.33 0.31 0.64 0.89 0.76 0.78 2.27 5.95 17.7 -40.9 5.94 2.16 0.78

2.19 2.14 1.35 0.66 0.63 1.21 1.42 0.87 0.89 2.17 3.99 5.94 5.95 -38.4 6.66 2.27

5.76 3.98 2.02 0.89 0.85 1.39 1.17 0.61 0.63 1.37 2.04 2.13 2.13 6.58 -37.6 5.98

17.2 5.95 2.13 0.79 0.75 0.89 0.65 0.32 0.32 0.66 0.88 0.78 0.78 2.27 6.06 -40.5
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III. Appendix C

As explained in section II.B, the Λ matrix is relatively insensitive to changes
in the function of conductances, γ. The following graphs are the results of an
experiment performed on a 15×15 network. They are the differences between
a “control” matrix, and the matrices created by slightly altered networks. A
clear difference was first apparent when 64 of the 480 conductances were
changed (graph 2a).
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The following graphs are the reconstructed Λ matrices from parameter
sets which have been truncated to limited precision.
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IV. Appendix D

In this appendix, we have reproduced reconstruction results from version 1, 2,
and 3 inverse solver. In the following data, the network beginning reconstruct
is a 4× 4 network.

4 3 2 1

| | | |
102.7 104.6 102.5 102.0

| | | |
5 − 106.8 −−+−− 101.3 −−+−− 104.8 −−+−− 105.8 −−+−− 102.1− 16

| | | |
106.7 102.5 105.7 101.9

| | | |
6 − 104.1 −−+−− 104.7 −−+−− 105.5 −−+−− 104.5 −−+−− 104.6− 15

| | | |
107.8 107.9 102.2 103.7

| | | |
7 − 106.7 −−+−− 103.3 −−+−− 106.1 −−+−− 102.6 −−+−− 101.8− 14

| | | |
102.1 104.9 105.3 106.3

| | | |
8 − 101.5 −−+−− 103.3 −−+−− 109.4 −−+−− 103.7 −−+−− 102.0− 13

| | | |
106.2 102.4 102.9 104.3

| | | |
9 10 11 12

Network reconstucted by version 1 inverse solver.

***** Conductance of the network *****

Hort. conductor at 2 1 is 106.80000000000

Hort. conductor at 2 3 is 101.30000000001

Hort. conductor at 2 5 is 104.09424390244

Hort. conductor at 2 7 is 105.80000000001

Hort. conductor at 2 9 is 102.10000000000

Hort. conductor at 4 1 is 102.10000000000

Hort. conductor at 4 3 is 100.70605468749

Hort. conductor at 4 5 is 94.064737650567

Hort. conductor at 4 7 is 101.10228487335

Hort. conductor at 4 9 is 104.60000000000

Hort. conductor at 6 1 is 106.70000000000

Hort. conductor at 6 3 is 95.429614679827

Hort. conductor at 6 5 is 102.88222388658

Hort. conductor at 6 7 is 100.35287804880

Hort. conductor at 6 9 is 101.80000000000
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Hort. conductor at 8 1 is 101.50000000000

Hort. conductor at 8 3 is 103.89999999999

Hort. conductor at 8 5 is 109.82053045187

Hort. conductor at 8 7 is 103.70000000000

Hort. conductor at 8 9 is 102.00000000000

Vert. conductor at 1 2 is 102.70000000000

Vert. conductor at 1 4 is 104.60000000000

Vert. conductor at 1 6 is 102.50000000000

Vert. conductor at 1 8 is 102.00000000000

Vert. conductor at 3 2 is 106.70000000000

Vert. conductor at 3 4 is 98.205756097583

Vert. conductor at 3 6 is 101.83355989181

Vert. conductor at 3 8 is 101.89999999999

Vert. conductor at 5 2 is 113.99394531249

Vert. conductor at 5 4 is 95.332373865792

Vert. conductor at 5 6 is 96.022027721780

Vert. conductor at 5 8 is 106.94712195123

Vert. conductor at 7 2 is 102.10000000001

Vert. conductor at 7 4 is 103.32946954813

Vert. conductor at 7 6 is 111.46645094641

Vert. conductor at 7 8 is 106.30000000001

Vert. conductor at 9 2 is 106.20000000000

Vert. conductor at 9 4 is 102.40000000000

Vert. conductor at 9 6 is 102.90000000000

Vert. conductor at 9 8 is 104.30000000000

Network reconstucted by version 2 inverse solver.

***** Conductance of the network *****

Hort. conductor at 2 1 is 106.80000000000

Hort. conductor at 2 3 is 102.70000000000

Hort. conductor at 2 5 is 104.80000000000

Hort. conductor at 2 7 is 105.80000000000

Hort. conductor at 2 9 is 102.10000000000

Hort. conductor at 4 1 is 104.10000000000

Hort. conductor at 4 3 is 104.69999999999

Hort. conductor at 4 5 is 105.85448470023

Hort. conductor at 4 7 is 105.65000000001
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Hort. conductor at 6 1 is 106.70000000000

Hort. conductor at 6 3 is 103.19999999999

Hort. conductor at 6 5 is 110.25876737313

Hort. conductor at 6 7 is 102.60000000001

Hort. conductor at 6 9 is 101.80000000000

Hort. conductor at 8 1 is 101.50000000000

Hort. conductor at 8 3 is 103.30000000000

Hort. conductor at 8 5 is 109.40000000000

Hort. conductor at 8 7 is 103.69999999999

Hort. conductor at 8 9 is 102.00000000000

Vert. conductor at 1 2 is 106.80000000000

Vert. conductor at 1 4 is 104.10000000000

Vert. conductor at 1 6 is 102.50000000000

Vert. conductor at 1 8 is 102.00000000000

Vert. conductor at 3 2 is 106.70000000000

Vert. conductor at 3 4 is 104.69999999999

Vert. conductor at 3 6 is 105.65000000001

Vert. conductor at 3 8 is 105.80000000000

Vert. conductor at 5 2 is 109.39999999999

Vert. conductor at 5 4 is 97.888271481797

Vert. conductor at 5 6 is 126.26906097309

Vert. conductor at 5 8 is 104.80000000000

Vert. conductor at 7 2 is 103.30000000000

Vert. conductor at 7 4 is 104.89999999999

Vert. conductor at 7 6 is 102.60000000001

Vert. conductor at 7 8 is 106.29999999999

Vert. conductor at 9 2 is 106.20000000000

Vert. conductor at 9 4 is 102.40000000000

Vert. conductor at 9 6 is 102.90000000000

Vert. conductor at 9 8 is 104.30000000000

Network reconstucted by version 3 inverse solver.

***** Conductance of the network *****

Hort. conductor at 2 1 is 106.80000000000

Hort. conductor at 2 3 is 101.30000000000

Hort. conductor at 2 5 is 104.80000000001
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Hort. conductor at 2 7 is 105.80000000000

Hort. conductor at 2 9 is 102.10000000000

Hort. conductor at 4 1 is 104.10000000000

Hort. conductor at 4 3 is 104.69999999999

Hort. conductor at 4 5 is 105.49999999999

Hort. conductor at 4 7 is 104.45000000001

Hort. conductor at 4 9 is 104.60000000000

Hort. conductor at 6 1 is 106.70000000000

Hort. conductor at 6 3 is 103.29999999998

Hort. conductor at 6 5 is 106.10000000002

Hort. conductor at 6 7 is 102.60000000002

Hort. conductor at 6 9 is 101.80000000000

Hort. conductor at 8 1 is 101.50000000000

Hort. conductor at 8 3 is 103.30000000000

Hort. conductor at 8 5 is 109.39999999999

Hort. conductor at 8 7 is 103.70000000000

Hort. conductor at 8 9 is 102.00000000000

Vert. conductor at 1 2 is 102.70000000000

Vert. conductor at 1 4 is 104.60000000000

Vert. conductor at 1 6 is 102.50000000000

Vert. conductor at 1 8 is 102.00000000000

Vert. conductor at 3 2 is 106.70000000000

Vert. conductor at 3 4 is 102.50000000001

Vert. conductor at 3 6 is 105.65000000000

Vert. conductor at 3 8 is 101.90000000000

Vert. conductor at 5 2 is 107.80000000000

Vert. conductor at 5 4 is 107.89999999999

Vert. conductor at 5 6 is 102.20000000000

Vert. conductor at 5 8 is 103.70000000000

Vert. conductor at 7 2 is 102.10000000000

Vert. conductor at 7 4 is 104.90000000000

Vert. conductor at 7 6 is 105.30000000000

Vert. conductor at 7 8 is 106.30000000000

Vert. conductor at 9 2 is 106.20000000000

Vert. conductor at 9 4 is 102.40000000000

Vert. conductor at 9 6 is 102.90000000000

Vert. conductor at 9 8 is 104.30000000000
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V. Appendix E

Table . Summary of the maximum errors using 4 different systems of equa-
tions.

Location Tradition Choosing Choosing Choosing
of method set of eqts. set of eqts. set of eqts.

Resistors of selecting from 1 side from 2 sides from 2 sides.
10,11 6.00 · 10−6 1.06 · 10−7 7.80 · 10−8 9.81 · 10−8

12,11 3.11 · 10−7 1.80 · 10−7 1.98 · 10−8 1.86 · 10−8

11,10 6.00 · 10−6 1.45 · 10−7 5.22 · 10−8 6.78 · 10−8

11,12 2.86 · 10−7 1.97 · 10−7 1.75 · 10−8 6.63 · 10−9
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VI. Appendix F

The following are the optimized systems for different size networks:

For 4 x 4 network:

5 5 5 5

0 12 6 6

0 0 8 11

0 0 0 12

Node 5 to 8 are on the left side of the network, and

Node 9 to 12 are on the bottom side of the network.

For 5 x 5 network:

6 6 6 6 6

0 15 7 7 7

0 0 10 13 8

0 0 0 15 13

0 0 0 0 14

Node 6 to 10 are on the left side of the network, and

Node 11 to 15 are on the bottom side of the network.

For 10 x 10 network:

11 11 11 11 11 11 11 11 11 11

0 30 23 15 13 12 12 12 12 12

0 0 30 26 24 16 14 13 13 13

0 0 0 30 28 25 24 16 14 14

0 0 0 0 30 29 27 25 25 16

0 0 0 0 0 30 29 28 26 25

0 0 0 0 0 0 30 29 27 27

0 0 0 0 0 0 0 30 28 28

0 0 0 0 0 0 0 0 29 29

0 0 0 0 0 0 0 0 0 30

Node 11 to 20 are on the left side of the network, and

Node 21 to 30 are on the bottom side of the network.
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