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Abstract

I discuss the discrete form of the Dirichlet problem in two dimensions and
consider three iterative methods to solve the system of equations arising from
this problem. Then I discuss the use of the most efficient of these iterative
schemes in an attempt to locate current sources of unit strength in a square
network of resistors. Finally, I discuss some shortcomings associated with
my method of solving this last problem.

I. The Dirichlet Problem

Consider a square network of resistors in the plane. The network is made up
of resistors joined together at nodes to form a lattice. Each resistor has con-
ductance γ, where conductance is defined to be the reciprocal of resistance.
The typical network under discussion in this paper has m boundary nodes
on a side and m2 interior nodes. I also difine rim nodes as those interior
nodes having at least one neighbor which is a boundary node. The typical
square network I am considering has 4m–4 rim nodes. Also, for convenience,
all conductances are taken to be 1 throughout this paper. A typical network
is shown in figure 1.
The discrete Dirichlet problem for this network (discussed simply in Snell

and Doyle (1)) consists of finding a potential function u = u(x,y) which
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satisfies the discrete form of Laplace’s equation (to be discussed below) at
each node in the network with the restriction that u(x,y) = φ(x,y) on the
boundary of the network; φ(x,y) is a prescribed vector of boundary potentials.
In the continuous case, solutions to the Dirichlet problem satisfy Laplace’s
equation:

uxx + uyy = 0.

When this equation is modified to be used in discrete (electrical network)
problems such as those in Curtis and Morrow (2), it takes the form:

[
∑

q∈N(p)

γ(pq)]u(p) =
∑

q∈N(p)

γ(pq)u(q)

where u(p) is the potential at node p, both sums are taken over the nodes q
which are neighbors of p, and γ(pq) is the conductance of the resistor joining
node p to its neighbor q.
For a given square network with m boundary nodes on a side, we get m2

equations of the form (2), one equation per interior node. The unknowns in
these equations are the potentials at each interior node p due to a specified
set of boundary potentials φ. The solution of this system of linear equations
is the solution to the discrete version of the Dirichlet problem. This system
of equations may be written in matrix form:

Au = b,

where u is a vector of interior potentials, b is a vector determined by φ and
the conductances, and A is what I will call the Kirchoff matrix since each
row of it comes from an application of (2), which is a statement of Kirchoff’s
Law.

II. Iterative Methods for Solving Systems of

Linear Equations

The iterative schemes discussed below were studied as an alternative to using
linear algebra FORTRAN subroutines to solve the linear system Au = b.
These schemes have little if any advantage over the FORTRAN subroutines
when the system to be solved is small. However, for very large systems, these
methods prove to be more efficient.
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A. The Jacobi Iterative Method

In this iterative method (as in the other methods to follow), an initial guess
u0 is given. Once the initial guess is given, the Jacobi method computes the
first approximation u1 to the true solution u using only the values u0. Once
the vector u1 is computed, the second approximation u2 is computed using
only the values in u1. This process is repeated until ‖ uk − u ‖< ε where ε is
a pre-determined (small) number.
Now, let me be more specific. The Kirchoff matrix A may be written

as the sum of a diagonal matrix D and a non-diagonal matrix N (i.e., the
diagonal entries of N are all 0 and the off-diagonal entries of N are the off-
diagonal entries of A):

A = D +N

Then the Jacobi iteration is given in matrix form by:

uk+1 = D−1(b−Nuk)

According to G. D. Smith (3), since the Kirchoff matrix is diagonally domi-
nant, the uk produced by the Jacobi method will converge to the true solution
u.
The Jacobi method has two major drawbacks that can be overcome using

another iterative scheme called Gauss–Seidel. The first drawback is that all
of the entries of u computed in the kth iteration must be saved in order to
compute the (k + 1)st iteration. The second drawback is that the Jacobi
method converges to the true solution u very slowly. Again, both these
problems can be overcome with the next iterative scheme: Gauss–Seidel.

B. The Gauss-Seidel Iterative Scheme

In this iterative method, the (k+1)st values in the vector uk+1 are used as
soon as they are computed. This both speeds up the convergence of the
iterations to the true solution u and makes it unnecssary to store any of the
values computed on the kth iteration. For example, consider the 4 x 4 system
of equations below, where the (k+1)st iteration is being computed:

u1
k+1 = a−1

11 (b1 − a12u2
k − a13u3

k − a14u4
k)

u2
k+1 = a−1

22 (b2 − a21u1
k+1 − a23u3

k − a24u4
k)
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u3
k+1 = a−1

33 (b3 − a31u1
k+1 − a32u2

k+1 − a34u4
k)

u4
k+1 = a−1

44 (b4 − a41u1
k+1 − a42u2

k+1 − a43u3
k+1)

Notice that the equation for the (k+1)st value of u2 uses the just computed
(k+1)st value of u1 but uses the kth values of u3 and u4 since the (k+1)st
for these variables have not been re–computed yet.
The Gauss–Seidel iteration method may be expressed in the general case

of m equations as follows:

uk+1
i = a−1

ii (bi −
i−1
∑

j=1

aiju
k+1
j −

m
∑

j=i+1

aiju
k
j )

Since the Kirchoff matrix A is symmetric and positive–definite, by theorem
2.4, Johnson and Riess (4), the Gauss–Seidel iterative scheme will converge
to the true solution u.

C. Gauss–Seidel with Successive Over–Relaxation

While the Gauss–Seidel method converges fairly rapidly even for large sys-
tems, it is possible to speed up the convergence (and therefore the computing
time) of this method by introducing what is called a relaxaion parameter, ω.
Before ω is defined, let me first write an typical equation from the system

(3) in the form of equation (2) as follows:

4uk+1
i = 1uk+1

i−1 + 1u
k
i+1 + 1u

k
i+m + 1u

k+1
i−m

where the coefficients of the u′s are specific to the case I am considering,
namely all conductances are equal to 1. It should be noted that the above
equation is valid for all interior nodes except rim nodes; for rim nodes the
equation is slightly modified since some of the terms are actually known
(boundary) values. This equation can be re–written:

uk+1
i = uk

i + [(u
k+1
i−1 + uk

i+1 + uk
i+m + uk+1

i−m − 4u
k
i )(.25)]

The expression in brackets can be thought of as a correction factor in going
from the kth iteration to the (k+1)st iteration. The idea behind SOR is to
multiply this correction factor by a constant ω (the relaxation parameter) in
order to speed up the convergence of the iterations to the true solution. I
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make no attempt here to describe more details of how to choose ω but I give
the expression I used for ω in my FORTRAN programs; this expression was
found in Johnson and Riess (4):

ω =
2

1 + sin(π/n)

where n is the number of eqations in the Kirchoff matrix. The rates of
convergence for these three iterative schemes are shown in figures 2 through
4.

III. Finding Current Sources: The Forward

Problem

Once I was able to solve the system (3) using Gauss–Seidel with SOR , I
began to use it to determine the potential at each rim node due to a given
configuration of current sources of unit strength when all the boundary nodes
were grounded (i.e., φ ≡ 0). These configurations had several resrictions on
them. No configuration of sources included any boundary nodes or rim nodes,
all configuraions had nine or fewer current sources, all configurations were
x–convex, and again, the magnitude of each current source was identically
1. A region is x–convex if along any row of the network there are no inner
nodes which are not sources between two nodes which are current sources.
Figure 5 shows a typical configuration.
The Dirichlet problem associated with this problem has two basic differ-

ences from the Dirichlet problem discussed in section I. A minor and obvious
difference is that all the entries of the vector b in the system Au = b are 0
because φ ≡ 0. The second difference is in the form of the equations in the
linear system (3) which correspond to inner nodes at which there is a current
source. Instead of being of the form of equation (2), the discrete form of
Laplace’s equation, these equations are of the form:

[
∑

q∈N(p)

γ(pq)]u(p) = 1 +
∑

q∈N(p)

γ(pq)u(q)

where the added term of 1 on the right hand side accounts for the current
sources of unit strength. This equation is a discrete form of Poisson’s equa-
tion:

uxx + uyy = h(x, y)

5



In the case under discussion, h(x, y) ≡ 1. The equations in the system (3)
corresponding to the inner nodes with no current sources are still of the form
of equation (2), as they are in the discrete Dirichlet problem discussed in
section I.
Again, the Gauss–Seidel method with SOR was used to solve the lin-

ear system arising from this problem because it was exceptionally fast and
because it is easy to program.

IV. Finding Current Sources: The Inverse Prob-

lem

The forward problem discussed in section III is simply to find the rim poten-
tials which arise from a given configuration of unit strength current sources.
The inverse problem in this case is that of finding the locations of the current
sources inside the network, given only a vector of rim potentials due to those
sources. Of course, along with the given rim potentials, I also assume that
the region of sources to be found is ”valid” ,i.e., has all the restrictions de-
scribed in section III. I now discuss the first halting steps in the search for an
algorithm to solve this problem. The basic idea offered here was suggested
to me by Professor Curtis.
Starting with a vector of rim potentials which comes from a valid region

of current sources, I first find the total current flowing out of the network
due to this region. This total current is just the sum of the currents exiting
the network at each boundary node. These currents are found using Ohm’s
Law, ∆V= IR. Since for each boundary resistor I know the boundary and
rim potentials and the conductance (1 ≡ γ = 1/R), the current flowing out
of the network at each boundary node is just

∆V = rimpotential − boundarypotential.

But since each boundary potential is identically 0, I have that the current at
each boundary node is just the value of the rim potential adjacent to that
node. Since all the current sources are of unit strength, once I know the total
current leaving the network due to a configuration of sources, I immediately
know the number of current sources to be located.
Once I know the number of current sources, I begin essentially to make

guesses about the location and configuration of these sources. I start by
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guessing a set of sources (always with the restrictions outlined in section III)
at the center of the network and comparing the rim potentials due to the
guessed region with the actual given rim potentials. Specifically, I compute a
vector error; each entry in error is the difference between the rim potential
due to my guessed region of sources and the rim potential due to the actual
region of sources:

error(i) = guessedrimpotential(i)− actualrimpotential(i)

where the index i refers to the ith rim node.
I make my next guess/approximation to the true region of sources by

considering the locations on the rim of the network of the maximum and
minimum values of the vector error. To make this discussion concrete, con-
sider figure 6.
Suppose the region shown in figure 6 is one of my guesses and that the

maximum value of error occurs at rim node i while the minimum value of
error occurs at rim node j, as shown. Since the rim potential at location i
is too large and the rim potential at location j is too small, my next guess
would be to move the source at the bottom right corner of the region (the
source nearest rim node i) to the first position above rim node j which will
make the region x–convex. This position is circled in figure 6 (only the 6
nodes marked with an x are part of the guessed region; the circled node will
be part of the next guess). So the region of my next guess would be that
shown in figure 7. Then I examine the error vector due to this guess and
repeat the guessing procedure (moving only one source per guess) until the
entries in error ≈ 0 (they never equal to 0 because of round–off error).

V. Shortcomings

In this section I discuss several major drawbacks: one concerning the formu-
lation of the inverse problem just described and some others concerning the
”algorithm” for solving it.
The first shortcoming is by far the most important, and this is that I offer

no theoretical proof that each valid region of sources produces a different
vector of rim potentials. I am fully aware that unless this is proved, the
inverse problem as I have stated it cannot be shown to have a unique solution.
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Now, the algorithm described in section IV for solving the inverse problem
(under the assumption that it has a unique solution) has several problems.
The first of these is that it sometimes occurred that the algorithm, if strictly
applied, lead me to keep moving a source back and forth between the same
two locations. That is, the error vector from one guess would lead me to
move a source to a new location, but the error vector with the source in the
new location would lead me to move the source back to its previous position.
Professors Curtis and Morrow suggested that linear programming techniques
could be used to avoid this problem of ”cycling”; I did not implement this
suggestion.
A second problem with this algorithm is that the error vector associated

with a guessed configuration of current sources did not always tell me un-
ambiguously which source to move on the next guess or to which location it
should be moved. The situation shown in figure 6 is idealized in this sense;
there is no ambiguity in the case illustrated there. However, it often hap-
pened that the largest entry in the error vector occurred at a rim node on
a row (or column) of the network which had no sources in it. A similar
situation frequently occurred with the smallest entry in the error vector. In
these cases I chose to move the source nearest (fewest resistor segments away
from) the rim node corresponding to the maximum value of the error vector.
This source was moved to the node nearest the rim node corresponding to
the minimum entry of error for which the region would still be x–convex.
One further suggestion made by Professors Curtis and Morrow for im-

proving the given algorithm was to compute the center of mass of the desired
region by using the given rim potentials resulting from it. If the center of
mass were known, the initial guess in the algorithm could be distributed
around this point, thus making the guesses more accurate from the begin-
ning; unfortunately, I had no opportunity to use this suggestion either.
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