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1 Introduction

We consider the following network 2. The nodes of {2 are the points
in 3D space. The set of nodes is denoted by €2,,. We define some
subset €2, of €2, as boundary nodes, so that cardinality of €2, N, =
cardQ)y > 2. All other nodes of €2, are called interior. The set of
interior nodes is denoted by €2;. N; = card(); > 0.

Q, =Q,UQ,.
N = card?,, = N, + N;.

For two different nodes p and ¢ belonging to 2,, the number v(pq)
is called conductance of pq. The function ~, called conductivity, is a
non-negative real function. Two nodes p and q are called neighbors
if v(pq) > 0. The set of all neighbors of node p is called N(p). If p
and ¢ are neighbors pq is called an edge or a conductor.

A network of conductorsis a network with defined set of boundary
nodes and conductivity function. Below we will call a network of
conductors just a network.

For a node p belonging to €2, u(p) denotes the potential at p. A
function w: ,, — R gives the current from node p to ¢ € N(p) by



Ohm’s Law
I(pq) = ~v(pq)(u(p) — u(q)).

For N
e I(pq) = I(gp) = 0.

For a boundary node ¢

I(q)= Y I(qp)

is called a boundary current.
A function u is called v-harmonic function, if for each interior

node p
> I(pg) = 0.
9€N(p)
According to Kirchoff’s Law, if a function ¢ is defined at the bound-
ary nodes, the network 2 will acquire a unique «y-harmonic function
u with u(p) = ¢(p) for all boundary nodes p.

For a network {2 with a conductivity function on it the linear
map A: ¢ — I, is defined by A¢ = I, where ¢ is a vector of bound-
ary potentials I, is the corresponding vector of boundary currents.
This map is called Dirichlet-to-Neumann map. ;From the maximum
principle and Kirchoff’s and Ohm’s Laws it can be proved that any
A has following properties (See [1])

e it is symmetric
e all non-diagonal entries are non-positive

e total of all entries in each row equals 0.

2 Plane equivalent of a network

Definition 2.1 The Kirchoff matriz of the network € is a square
NxN matrix K(Q) = {k;;} where

kij = —7(pz‘pj) if i
and
ki = X gen(p) 7 (Piq)-



The matrix K (£2) contains all information about conductivity func-
tion of network 2. We denote the set of Kirchoff matrices by IC. A
matrix M = {m;;} belongs to I if

mg; > 0,
N

By this definition the set of Dirichlet-to-Neumann maps belongs to
K.

If Q) is a network with no interior nodes, by Kirchoff’s and Ohm’s
Laws

K(Q)¢ = I,

therefore, B B
K(Q2) = A(Q2).

This proves the next statements.

Statement 2.2 The set of Dirichlet-to-Neumann maps equals
K.

Statement 2.3 For any A € K there exists unique network
) with no interior nodes such that A represents the Dirichlet-to-
Neumann map for €.

Statement 2.4 The map from networks with no interior nodes
to Dirichlet-to-Neumann maps is 1 < 1.

Definition 2.5 A plane equivalent of network € is a network
Q) with no interior nodes which has the same Dirichlet-to-Neumann
map as €.

Theorem 2.6 Any resistor network has unique plane equivalent.

Definition 2.7 Two networks are equivalent if they have the
same plane equivalent.

For a network €2 with a conductivity function on it the linear map
®: ¢ — ugy is defined by ®¢ = uy, where ¢ is a vector of boundary
potentials and u4 is the corresponding vector of potentials on nodes
of Q2. ® is represented by an NxN, matrix.

We number nodes of a network 2 so that boundary nodes go first.
That is,

pi € Q<1 < N,
and



piEQi<:>i>Nb.

We write K(©2) and ®(2) in block form,

Q) =| I |and K(Q)=|K | MT

00 M

[1]

where [ is the identity matrix. Now using Kirchoftf’s and Ohm’s
Laws we obtain that

K| MT| | I |=|AQ)

(1)
M

[1]

Dq 0

where 0 is a zero matrix. Since = is non-singular, we can obtain
that B
AQ)=K(Q) =K —M'=Z"'M. (2)

This equation expresses the Dirichlet-to-Neumann map of a network
in terms of blocks of this network’s Kirchoff matrix.

3 Blocks in Dirichlet-to-Neumann maps

We consider a network 2 with Dirichlet-to-Neumann map A. We
write the Kirchoff matrix of 2 in block form,

KQ) =|K | MT

—_
—
—

Let A be a n by n square submatrix of K’ corresponding to rows
i1, ..., %, and columns ji,...,j,. Let C be the N;xn matrix formed
by choosing columns ji, ..., j, of block M. Let B be the nxN; matrix



formed by choosing rows i1, ..., i, of block MT. A, is the submatrix
of A corresponding to rows iy, ..., 7, and columns ji, ..., jn.
By formula (2)
Ay =A—-BEIC.

Now we have that

A| B I 0| =|As|B
C| = —=71C | I 0| =2
If
W=|A|B
C|=

we obtain that
(W= [Aal|Z]. (3)

Taking A to be an entry of K’ we can find any entry of A in terms
of two determinants of blocks of K(£2).

Ng=| | Ky |mi | | /IEL

mj =

Since Z is positive definite we have that

sign|Aa| = sign|W].

4 Theorem about elimination of a subnetwork

Definition 4.1 A network Q = {Q,,Q,,4} is a subnetwork of
O = {0, Q) if

~

Q, C Q.



A

0 = (Upea N\

~

P, q € 4 = 5(pq) = v(pq).

Any subnetwork is defined by its set of interior nodes. The Kirchoft
matrix K of () is a principal submatrix of K. R

Definition 4.2 Elimination of a subnetwork 2 from a network
Q) is a transformation of 2 to ¥ denoted by Q & Q if

\Ifb = Qb ~
Te(pg) =velpg) i pEQ.
Yo (Pq) = 74(pq) if p,q € .

where 74 is the conductivity function on the plane equivalent of Q.
In other words to eliminate some subnetwork from a network is to
replace this subnetwork with its plane equivalent.

We number the nodes so that the boundary nodes of (2 go first
and interior nodes of {2 go last. That is,

pi € Qp <1 < card(),
and ) A
pi € ) & 1 > cardS) — cardS);

Now we have that

K/ PT UT

K@Q)=|P| S |R"

Ul R | C

Taking into account that C'is non-singular and using Definition 4.2
and formula (2) we can obtain that if ¥ = Q& ) then



K@) =| K -UTC'U | PT —UTC'R | = A{V,, U, v })

P—R'C™'U | S—R'C™'R

We define linear maps ®(2) and ®(¥) as it was done in Section 2.
Solving equation (1) we obtain that

by =—(S - R'C'R)"Y(P - R'C'U)

and
I
Q) = Dy = (V)
—C7Y(T + Rdy) —C~YT + R®y)

The non-singularity of S — RTC~!R follows from (3). Now it is easy
to show that
A(T) = A(Q).
We proved the following theorem. X )
Theorem 4.4 Suppose ¥ = Q © 2 where () is a subnetwork
of Q. Then ¥ and Q are equivalent. That is A(¥) = A(2). The
matrix ®(W¥) is an upper part of (). Therefore,

Iy (pq) = Ia(pq) if P,q ¢ YUn.

In other words, elimination of a subnetwork does not affect poten-
tials and currents outside of it.

5 Recoverable networks

We will say that we know the shape of a network if we know all
neighbors for each node of this network.

Definition 5.1 A network is recoverable if there does not exist a
network with the same shape, same plane equivalent (or Dirichlet-
to-Neumann map), and different conductivity function.
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A network is non-recoverable if it is not recoverable.

By Definition 5.1 two recoverable networks with the same shape
have different plane equivalents.

Statement 5.2 All subnetworks of a recoverable network are
recoverable. R

Elimination of node p is an elimination of a subnetwork (2 such
that €, = p. R

Elimination of a subnetwork (2 from () results in the same network
as elimination of all interior nodes of 2 in any order. Elimination
of some set S of interior nodes of () results in the same network as
elimination of the subnetwork Q if 2, = S.

By Theorem 4.4 elimination of an interior node p of a network 2
does not affect plane equivalent of any subnetwork €2 of ) if p € €.

6 Chain elimination

We consider a network Q = {€Q,,Q,, v} with Q, # Q,. We will
eliminate interior nodes of €2 one by one. The network obtained
after j* elimination is called €. Let

B =\
Let O be the subnetwork of Q with ©/ = E¥. Then
V=000

By Theorem 4.4 ‘
A(Q) = A(Y).

Let W7 = {Q,, U] v} where
Ul =Q,\FJ.
UNi = . By formula (2) we obtain that
K(Qo W) =K()=A(1).
K(Q) = A(TY).



7 Specific comments

Formula (2) gives a direct algorithm for finding the Dirichlet-to-
Neumann map for any network with known conductivity function.
For networks with two boundary nodes this formula represents the
generalized parallel and series laws of electrical circuit theory.



