Introduction

Any body in space has a gravitational force, and hence potential, associated with it. If we imagine a body, D, of mass m in R^3 , then at any point in space outside of D there exists a gravitational field vector, $-\overline{V}u$, and gravitational potential, u, due to D. D creates a vector field in 3-space according to $\int \frac{ds}{ds} ds$ (q = mass of element, r = distance to element).

ILLUSTRATION

A vector field in RF.

What can this vector field tell us about D?

The newtonian potential, $u(\bar{\chi})$, obeys Poisson's equation:

$$\Delta u = -4\pi \rho(\vec{x})\vec{\chi}(D)$$

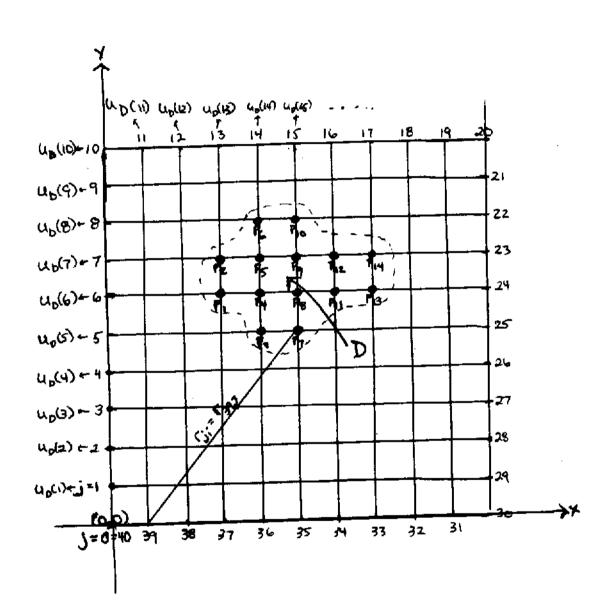
where $\rho(\hat{x})$ is the density of D and $\hat{\chi}$ (D) is the characteristic function of the point set D. If we assume constant density, the inverse problem is to determine the function $\hat{\chi}$ (D) from the known solution to the above equation. More specifically, if we measure u at a finite number of points on a surface outside of D, how can we find D? This is the inverse problem of the theory of potential.

In this paper, I discuss the two-dimensional, discrete version of the gravitational problem. u is measured at a finite number of points on the boundary of an $(n \times n)$ grid on which D lies.

Basic Terminology

Let Ω be an $(n \times n)$ grid on \mathbb{R}^2 . (That is, Ω is made up of the line segments: x = 0, x = 1, x = 2, ..., x = n where $y = 0 \rightarrow n$, and y = 0, y=1...y=n, $x:0 \longrightarrow n$) D is a set of particles (masses, fixed electromagnetic charge sources, etc.), located in a subset of the interior lattice points of Ω . (Legal subsets described below.) The size of D is m, (indicating the mass), so that D = $\bigcup_{i=1}^{n} P_{i}$ where each p; is located at point in \mathbb{R}^{2} , (x'_{1},y'_{1}) . (Because p; is on \overline{a} lattice point of the grid, x; and y; are integers such that $0 < x_i$, $y_i < n$, for each i.) The p; are labelled from bottom to top, then left to right. u is measured at the set of points labelled {1,2,3,...,4n} which lie on the boundary of Ω . A point in this set will be referred to as j, and j = (x_i) . v.). (This is to be consistent with textbook theory notation which measures potential from a particle located at (x', y') at a point in space (x, y).) x_i and y_i are integers such that $0 < x_i$, $y_i < n$, for each j. Let $j_a = (0, 0) = j_{aa}$. These points are then labelled clockwise around Ω starting at i.

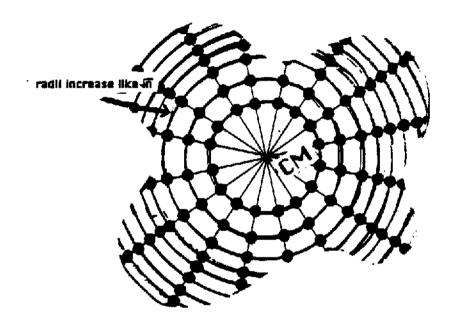
LAYTECH GRAPHIC I



 $u_i(j)$ is the potential measured at j due to p_i . r_{ji} is the distance from j to p_i ; that is, $r_{ji} = [(x_i^2 - x_j^2)^2 + (y_i^2 - y_j^2)^2]^{\frac{1}{2}}$ $u_j(j)$ represents the potential at j due to the whole distribution D.

Assumptions

Assume D has constant density . In some potential theory, determining the density of D is part of the inverse problem, but I don't attempt that here. Constant density can be represented on Ω by assigning each p_t the value 1. If D were star-shaped and we got measurements on a ball enclosing D, constant density could be represented in another way:



Additionally, assume that for any subset of points of D which lie on the same line x=c (i.e. are in the same collumn), the y coordinates of those points form a contiguous set of integers, and for a subset on the same line y=c (in the same row), the x coordinates of those points form a contiguous set of integers. This means D has no holes. Examples of legal configurations of D are as follows:

LAYTECH GRAPHIC II

(6) and (7) are not legal.

This criterion is the rectangular analogy to "star-shaped", and is assumed to be necessary due to Gauss' law. For if $D_1 = a$ spherical shell of mass m centered at the same point as $D_z = a$ solid sphere of mass m, then $u_{p_1}(\hat{\chi}) = u_{p_2}(\hat{\chi})$ although $\chi(D_1) = \chi(D_2)$. (The discrete representations of D_1 and D_2 on Ω would give similar u(j)'s, and $\lim_{n \to \infty} u_{p_2}(j) = u_{p_2}(j)$.) Other non-star-shaped D's may also give the same u_{p_2} but it is in general true only for D with spherical symettry.

Also, consider that the zero potential occurs consistently, infinately far from D.

The Forward Problem

The field due to a distribution of particles can be reguarded as the superposition of the fields from the individual particles. This principle works for u as well as $-\overline{\nabla}u$, therefore we add the individual potentials, i.e. in general

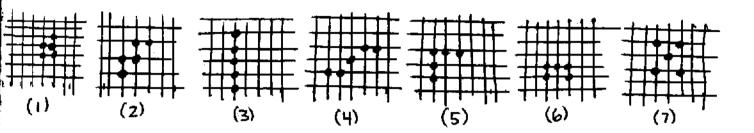
where r is the distance from element dx'dy'dz' to $\frac{1}{2}$ at which u is evaluated, and ρ is the density function. With this in mind, we know for D as defined on Ω :

$$U_p(j) = \sum_{i=1}^{n} \log \left[\frac{1}{r_{ii}} \right]$$
 for each j.

(Logarithms compensate for 2 dimensions).

Given any n and D, then, u can be calculated as follows:

Sketch of Laytech Graphic It



$$U_{D}(j) = \sum_{i=1}^{m} loq \left[\frac{1}{\sqrt{(x_{i}^{1} + n - j)^{2} + (n - y_{i}^{1})^{2}}} \right] for 0 \leq j \leq n$$

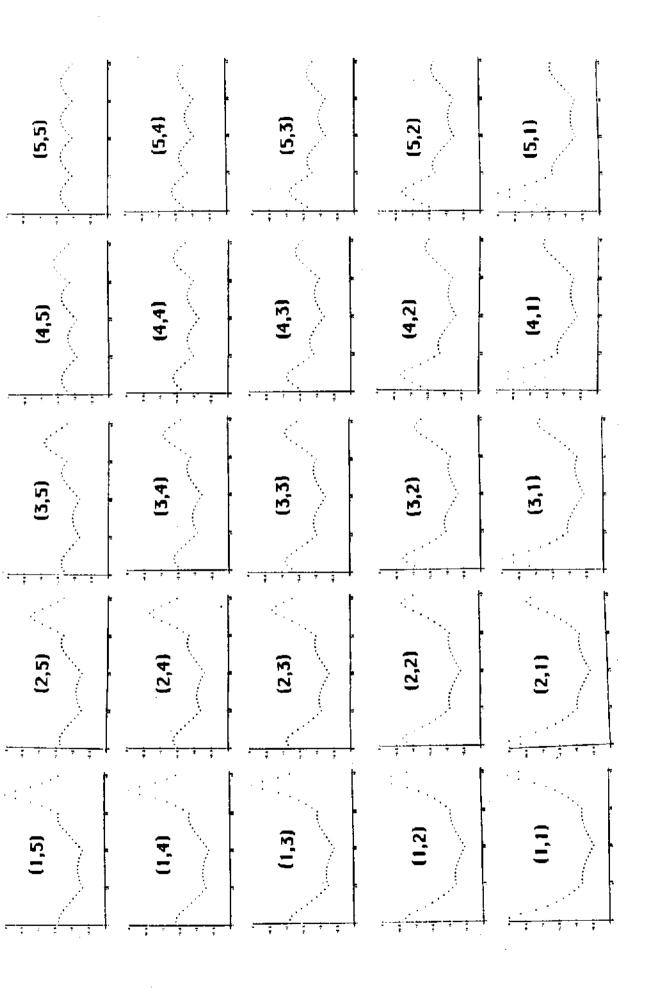
$$= \sum_{i=1}^{m} loq \left[\frac{1}{\sqrt{(x_{i}^{1} + n - j)^{2} + (n - y_{i}^{1})^{2}}} \right] for n \leq j \leq 2n$$

$$= \sum_{i=1}^{m} loq \left[\frac{1}{\sqrt{(n - x_{i}^{1})^{2} + (y_{i}^{1} - 3n + j)^{2}}} \right] for 3n \leq j \leq y_{n}$$

$$= \sum_{i=1}^{m} loq \left[\frac{1}{\sqrt{(x_{i}^{1} - 4n + j)^{2} + y_{i}^{1} + 2}} \right] for 3n \leq j \leq y_{n}$$

$$= \sum_{i=1}^{m} loq \left[\frac{1}{\sqrt{(x_{i}^{1} - 4n + j)^{2} + y_{i}^{1} + 2}} \right] for 3n \leq j \leq y_{n}$$

I wrote computer codes which give a numerical table of values for u at each j, and graph j vs. u, once assigned a D.



j vs. u (j) for D of m=1 located at pt.s on (18x10) grid as labelled