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1 Introduction

The most basic unit of transaction will be the discrete conductor. A conductor
is an element with two nodes, where electrical potentials may be applied, and
a conductance γ that determines the current that flows across the nodes due
to the potential difference. γ is a number in the setC+ = {z ∈ C|Re(z) > 0}.
Ohm’s Law describes the conductance of a discrete element as the ratio

γ = I/V, (1)

where I is the current flowing from a potential difference V across the con-
ductor.
A network Ω = (Ω0,Ω1) is a set of points (the nodes) Ω0 = {pi}

k
1, and

a set of edges Ω0 = {σij}, σij = pipj connecting points of Ω0. A network
of conductors Γ = (Ω, γ) is a network together with a function γ : Ω1 →
C+ (the conductivity). The network operates as a set of conductors joined
together. We allow potentials to be imposed on the subset ∂Ω0 ⊂ Ω0, called
the boundary of Ω. The interior of Ω, Ω0 − ∂Ω0, is denoted int Ω0. Let
N (pi) = {pj|σij ∈ Ω1} be the set of neighbors connected to pi by edges in Ω1.
Potentials φ applied to the boundary of the network give rise to a potential
u on the interior such that

∑

pj∈N (pi)

γ(pipj)(u(pi)− u(pj)) = 0 ∀pi ∈ int Ω0; (2)
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this is Kirchoff’s Law. This causes currents Iφ to flow through each of the
boundary nodes. The Dirichlet-Neumann map Λ : ∂Ω0 → ∂Ω0 precisely
describes this relationship by the equation Λφ = Iφ. Λ is linear in φ and can
be represented as a k by k matrix, where k = |∂Ω0|. Λ is symmetric, its
nondiagonal entries have nonpositive real part, and the sum of any row (or
column) is zero.
We generalize further, to consider whole networks as the basic elements of

larger configurations. A finite k-block Γk with n faces is a network of resistors
where the boundary nodes are naturally partitioned into faces F = ∪n1Fj,

where each face consists of the nodes Fj = {pi}
jk
(j−1)k+1. In this context, Λ is

an n by n matrix of k by k matrices Λij. Λ takes k-vector potentials φi on
each of its faces to the corresponding k-vectors of currents. By requirements
on networks, we see that Λij = Λ

t
ji, and the sum of any row (or column) of

matrices is also zero.
In the spirit of networks, we define a configuration of blocks to be a set of

finite blocks where certain faces are joined together, and we are allowed to
apply potentials at some subset of the faces. Λ is defined to be the potentials-
to-currents map for the whole configuration, as was done with networks.
Noticing that 1-blocks with two faces act exactly like conductors, we see that
any theorem proved for configurations of blocks also must hold for networks
of discrete conductors. For simplicity, we shall like to think of the faces as
one-dimensional, though there is no reason why we could not have used some
higher dimension.
Our main aim will be to find algebraic expressions that represent basic

operations with configurations, and then to apply these expressions to find
interesting results. For clarity we show proofs first in the case of networks,
and then generalize to the case of finite blocks. In this paper the term non-
singular applies to any matrix A (including proper rectangular matrices) such
that Au = 0⇒ u = 0. Diagrams are included to clarify the operations, and
we hold to the following representations: Empty circles represent boundary
nodes, while filled circles represent interior nodes.
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2 Operations With Networks: Networks Of

Individual Conductors

Γ(3)

Γ(1) Γ(2)

c c c c c c c c c c

p
(1)
1 p(1)m p

(2)
1 p(2)n

p
(3)
1 p(3)m p

(3)
m+1 p

(3)
m+n

Figure 1

Lemma 1 Let Γ(1),Γ(2) be a pair of networks with associated maps Λ(1),Λ(2)

and boundary nodes {p(1)i }
m
1 , {p

(2)
i }

n
1 . Take Γ(3) to be the network consisting

of both Γ(1) and Γ(2), as in Figure 1, with boundary nodes {p(3)i }
m+n
1 corre-

sponding to

p
(3)
i ←→

{

p
(1)
i , i ≤ m

p
(2)
i−m i > m

Then

Λ(3) =

(

Λ(1) 0
0 Λ(2)

)

(3)

Proof. Let ei (i = 1 . . .m + n), e
′

i (i = 1 . . .m) and e
′′

i (i = 1 . . . n) be the
euclidean bases for Cm+n, Cm and Cn.

etiΛ
(3)ej = I(3)ej

(pi) =



















I
(1)

e
′

j

(p
(1)
i ), i, j ≤ m

I
(2)

e
′′

j−m

(p
(2)
i−m), i, j > m

0 otherwise


















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=











(e
′

i)
tΛ(1)e

′

j, i, j ≤ m

(e
′′

i−m)
tΛ(2)e

′′

j−m i, j > m
0 otherwise











.
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Figure 2: τ = (12)(345)

Lemma 2 Let Γ be a network with map Λ and boundary nodes {pi}
n
1 . Let

τ ∈ Sn be a permutation. Let Γ
′

be the network with boundary nodes
{p

′

i}
n
1 ←→ {pτ(i)}

n
1 , as in Figure 2. Then

Λ
′

= AtΛA (4)

where

A = (aij) =

{

1, i = τ(j)
0 otherwise

Proof.

etiΛ
′

ej = etτ(i)Λeτ(j) = etiA
tΛAej.
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Lemma 3 Let Γ be a network with map Λ and boundary nodes {pi}
n+k
1 . Let

Γ
′

be the network that results from shorting the last k nodes together and
treating them as a single node, as in Figure 3. Let {p

′

i}
n+1
1 be the set of

boundary nodes of Γ
′

, and let Λ
′

be the map for Γ
′

. Then

Λ
′

= BtΛB (5)

where B is the n+ k by n+ 1 matrix

B = (bij) =











δij, i ≤ n+ 1
1, i > n+ 1 and j = n+ 1
0 otherwise

Proof. Let ei (i = 1 . . . n+ k) and e
′

i (i = 1 . . . n) be the euclidean bases for
Cn+k and Cn. Applying the potentials e

′

j to Γ
′

impresses the potentials

φj =

{

ej, j ≤ n
∑

j>n ej, j = n+ 1

on the network Γ. The currents Λφj from Γ give the currents

I
′

e
′

j

(p
′

i) =

{

etiΛφj, i ≤ n
∑

j>n e
t
iΛφj, i = n+ 1
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on Γ
′

. Λ
′

e
′

j = IΛ
′

e
′

i = BtΛφi, and Λ
′

= Λ
′

I = BtΛB.

Γ
′

Γ

s s

c c c

p1 pm+n

p
′

1 p
′

m

Figure 4

Lemma 4 Let Γ be a connected network with map Λ and boundary nodes
{pi}

n+k
1 . Let Γ

′

be the network that results from restricting ∂Ω0 to the first n
nodes, so the the last k are effectively interior, as in Figure 4. Write

Λ =

(

A B
Bt C

)

,

where A is n by n and C is k by k. Then

Λ
′

= A−BC−1Bt. (6)

Proof. Let ei (i = 1 . . . n + k) and e
′

i (i = 1 . . . n) be the euclidean bases
for Cn+k and Cn. For each potential e

′

i on Γ
′

, the nodes {pj}
n+k
n+1 achieve the

potentials uti =
(

0 · · · 0 ui(pn+1) · · · ui(pn+k)
)

such that the current
at those nodes vanishes. ui is the solution of the equation

(

0 I
)

(

A B
Bt C

)

(ei + ui) = 0, i = n+ 1 . . . n+ k

To solve for all the ui’s at once, let V be the k by n matrix

V = (vij) = uj(pi+k)
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By the previous equation, V is the solution of

Bt + CV = 0

As stated in the introduction, the entries on the diagonal of Λ are Λii =
−
∑

j 6=i Λij, so for n > 0, the diagonal entries of C satisfy the inequality
Re(cii) > −Re(

∑

j 6=i cij) when the network is connected. Therefore C is
diagonally dominant, C−1 exists, and V = −C−1Bt.
For each e

′

i, the currents at Γ
′

are

Λ
′

e
′

i =
(

I 0
)

Λ(ei + ui), i = 1 . . . n.

Solving for the currents by substituting for ui we get

Λ
′

I =
(

I 0
)

(

A B
Bt C

)(

I
−C−1Bt

)

= A−BC−1Bt.

We will refer to this notion as interiorization in the remainder of this article.
This proof may be extended to networks of other disjoint networks, as fol-
lows: If the nodes interiorized are part of a network connected to some other
network that will retain at least two boundary nodes, this proof still works.
Interiorizing an entire disjoint network simply removes those rows columns
from the matrix (see Lemma 1). If the interiorized network is part of a larger
network that will end up with a single boundary node, the rows and columns
of the interiorized network are removed, and the row and column related to
the remaining node are all zeroed out, since no current will flow into that
node.

3 Generalization: Operations On Configura-

tions Of Blocks

Lemma 5 Let Γ
(1)
k ,Γ

(2)
k be a pair of configurations of k-blocks with associated

maps Λ(1),Λ(2) and faces {F (1)i }
m
1 , {F

(2)
i }

n
1 . Take Γ

(3)
k to be the configuration

consisting of both Γ
(1)
k and Γ

(2)
k , with faces {F (3)i }

m+n
1 corresponding to

F
(3)
i ←→

{

F
(1)
i , i ≤ m

F
(2)
i−m i > m
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Then

Λ(3) =

(

Λ(1) 0
0 Λ(2)

)

(7)

Proof. Follows immediately from Lemma 1.

Lemma 6 Let Γk be a configuration with map Λ and faces {Fi}
n
1 . Let τ ∈ Sn

be a permutation. Let Γ
′

k be the configuration with faces {F
′

i }
n
1 ←→ {Fτ(i)}

n
1 ,

as in Fig. 2.6. Then

Λ
′

= AtΛA (8)

where A is the n by n matrix of k by k matrices Aij

A = (Aij) =

{

I, i = τ(j)
0 otherwise

Proof. Follows from Lemma 2, permuting the nodes n at a time.

Definition 1 Let {pji} be the set of boundary nodes of some Γk, so that
pji corresponds to the ith node on the jth face. A twist of a face Fj is a
renumbering of the nodes on that face so that {pji} becomes {p

j
k+1−i}.

Lemma 7 Let Γk be a configuration with map Λ and faces {Fi}
m
1 . Let Γ

′

k be
the network that we arrive at by twisting the nth face of Γk. Then

Λ
′

= BtΛB (9)

where B is the m by m matrix of k by k matrices Bij

B = (Bij) =















































I, i = j 6= n














0 · · · 0 1
... 1 0

0 1
...

1 0 · · · 0















i = j = n

0 otherwise
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Proof. Obvious from Lemma 2.
Similar transformations exist in higher dimensions to handle the permu-

tations corresponding to face rotation, and the transforming matrix B could
be calculated from Lemma 2 also.

Lemma 8 Let Γk be a configuration with map Λ and faces {Fi}
m+n
1 , where an

individual node pba is the ath node on the bth side. Let Γ
′

k be the configuration
that results from shorting the last n faces together and treating them as a
single face. Let {F

′

i }
m+1
1 be the set of faces of Γ

′

k, and let Λ
′

be the map for
Γ
′

k. Then

Λ
′

= CtΛC (10)

where C is the m+ n by m+ 1 matrix of k by k matrices

C = (Cij) =

{

I, i = j, or i > m+ 1 and j = m+ 1
0 otherwise

Proof. A modification of Lemma 3 will work here. Let ei (i = 1 . . . k(m+n))
and e

′

i (i = 1 . . . k(m + 1)) be the euclidean bases for C
k(m+n) and Ck(m+1).

Applying the potentials e
′

j to Γ
′

impresses the potentials

φj =

{

ej, j ≤ km
∑n−1

a=0 ej+ak, j > km

on the network Γ. The currents Λφj from Γ give the currents

I
′

e
′

j

(pba) =

{

eta+bkΛφj, a+ bk ≤ km
∑n−1

h=0 e
t
a+(b+h)kΛφj, a+ bk > km

on Γ
′

. Λ
′

e
′

j = IΛ
′

e
′

i = CtΛφi, and Λ
′

= Λ
′

I = CtΛC.

Lemma 9 Let Γk be a configuration with map Λ and faces {Fi}
m+n
1 . Let Γ

′

k

be the network that results from restricting F to the first m faces, so the the
last n are effectively interior. Write

Λ =

(

A B
Bt C

)

,
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where A is the km by km matrix

A =









Λ1,1 · · · Λ1,m
...

. . .
...

Λm,1 · · · Λm,m









,

B is the km by kn matrix

B =









Λ1,m+1 · · · Λ1,m+n
...

. . .
...

Λm,m+1 · · · Λm,m+n









,

and C is the kn by kn matrix

C =









Λm+1,m+1 · · · Λm+1,m+n
...

. . .
...

Λm+1,m+1 · · · Λm+n,m+n









.

Then

Λ
′

= A−BC−1Bt. (11)

Proof. Follows from Lemma 4, interiorizing the last kn nodes.

4 The Constructibility Theorem

Theorem 1 For any finite configuration of finite blocks, there is a three-
step algorithm for computing its Dirichlet-Neumann map Λ, assuming that
the map Λi for each constituent block is known.

Proof. Take a configuration with n blocks. Apply Lemma 5 n − 1 times,
first to Λ1 and Λ2, then to the resultant Λ and Λ3 , and so on. Permuting
and twisting the faces as necessary with Lemmas 6 and 7, attach the required
faces together with Lemma 8. Finally, interiorize the faces as required via
Lemma 9.
By the statement in the introduction, this holds for networks of discrete

conductors as well, so for each individual block we can apply this algorithm
to get its Λ.
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Example

a a a

a a a
a b c

1 3 5

2 4 6

Λ =





















a −a 0 0 0 0
−a a 0 0 0 0
0 0 b −b 0 0
0 0 −b b 0 0
0 0 0 0 c −c
0 0 0 0 −c c





















a

a a ab ca
2 4 3

1

Λ =











a 0 0 −a
0 b 0 −b
0 0 c −c
−a −b −b a+ b+ c











a

a aqb c
a

2 3

1 Λ =









a(b+c)
δ

−ab
δ

−ac
δ

−ab
δ

b(a+c)
δ

−bc
δ

−ac
δ

−bc
δ

c(a+b)
δ









δ = a+ b+ c

5 Multiple Operations On Networks

Γ(3)

Γ(1) Γ(2)

s
s

c c c c c c c c

p
(1)
1 p

(1)
m+k p

(2)
1 p

(2)
k+n

p
(3)
1 p

(3)
m+k p

(3)
m+k+1 p

(3)
m+n

Figure 5
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Definition 2 Γ(3) = Γ(1)◦kΓ
(2) will refer to the network with boundary nodes

{pi}
m+k+n
i=1 , where the first m boundary nodes correspond to the first m bound-

ary nodes of Γ(1), the last n boundary nodes correspond to the last n boundary
nodes of Γ(2), and the middle k boundary nodes are connected to both Γ(1) and
Γ(2), as in Figure 5.

Γ(3)

Γ(1) Γ(2)

s
s

c c c c c c

p
(1)
1 p

(1)
m+k p

(2)
2 p

(2)
k+n

p
(3)
1 p(3)m p

(3)
m+1 p

(3)
m+n

Figure 6

Definition 3 Γ(3) = Γ(1) •kΓ
(2) refers to the network obtained by first taking

Γ(3) = Γ(1) ◦kΓ
(2) and then interiorizing the middle k nodes, as in Figure 6.

For notational simplicity, ◦k and •k may be written as ◦ and • when the
number k is understood.

Lemma 10 Let Γ(1),Γ(2) be a pair of networks with associated maps Λ(1),Λ(2)

and boundary nodes {p(1)i }
m+k
1 , {p(2)i }

k+n
1 . Write Λ(1) =

(

A B
Bt C

)

and

Λ(2) =

(

P Q
Qt R

)

. Let Γ(3) = Γ(1) ◦ kΓ
(2) and Γ(4) = Γ(1) • kΓ

(2), where

A is m by m, C and P are k by k, and R are n by n. Then

Λ(3) = Λ(1) ◦kΛ
(2) =







A B 0
Bt C + P Q
0 Qt R





 (12)
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and

Λ(4) = Λ(1) •kΛ
(2) =

(

A 0
0 R

)

−

(

B
Qt

)

(

C + P
)−1 (

Bt Q
)

(13)

=

(

A−B∆Bt B∆Q
Qt∆Bt R−Qt∆Q

)

, (14)

where

∆ =
(

C + P
)−1

. (15)

Proof. (5) follows from applying Lemmas 2 and 3 for each set of nodes in
sequence. (6) follows directly from (5) and Lemma 4.
The corresponding theorems look exactly the same for block configura-

tions. In that case we set up the matrices A, B, C, P , Q and R in the same
manner as Lemma 9.

6 Derivatives Of ΛWith Respect To Element

Conductivities In Subnetworks

Having a closed-form expression for the operations ◦k and •k acting on the
Λ-matrices enables us to calculate derivatives of Λ with respect to elements of
sub-networks or sub-configurations. For clarity here we use the terminology
of networks. Choose any set Σ of σ’s in Ω1 that contains all the elements
with which we wish to take derivatives.. Applying the construction theorem,
calculate ΛΩ1−Σ and ΛΣ. Clearly either Λ = ΛΩ1−Σ ◦ ΛΣ or Λ = ΛΩ1−Σ •
ΛΣ, depending on whether the subnetwork in question will be connected
entirely to boundary nodes or not. In either case, we merely differentiate the

equations (12) or (14), paying attention to the fact that
∂ΛΩ1−Σ
∂γi

= 0. In the
first case we get the simple expression

∂(ΛΩ1−Σ ◦ ΛΣ)

∂γi
=

∂

∂γi







A B 0
Bt C + P Q
0 Qt R





 =









0 0 0

0 ∂P
∂γi

∂Q
∂γi

0 ∂Qt

∂γi

∂R
∂γi









(16)

=

(

0 0
0 ∂ΛΣ

∂γi

)

(17)
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For •, the expression is more complicated. Before we begin, we review an
elementary lemma from algebra:

Lemma 11 Let A be a matrix function of t. When A−1 exists,

∂A−1

∂t
= −A−1∂A

∂t
A−1.

Proof. Let AA−1 = I. Applying the product rule gives

∂AA−1

∂t
= A

∂A−1

∂t
+
∂A

∂t
A−1 = 0

Putting the right half of the sum on the right side of the equation and
multiplying both sides of the equation on the left by A−1 gives the desired
result.
In the second case we have

∂(ΛΩ1−Σ • ΛΣ)

∂γi
=

(

0 0
0 ∂R

∂γi

)

+

(

B
Qt

)

∆
∂P

∂γi
∆
(

Bt Q
)

−

(

0
∂Qt

∂γi

)

∆
(

Bt Q
)

−

(

B
Qt

)

∆
(

0 ∂Q
∂γi

)

, (18)

where again

∆ =
(

C + P
)−1

. (19)

The same approach works for the second derivatives:

∂(ΛΩ1−Σ ◦ ΛΣ)

∂γi∂γj
=

(

0 0

0 ∂2ΛΣ
∂γi∂γj

)

(20)

and, after simplifying,

∂2(ΛΩ1−Σ • ΛΣ)

∂γi∂γj
=

(

0 0

0 ∂2R
∂γi∂γj

− ∂Qt

∂γi
∆ ∂Q

∂γj
− ∂Qt

∂γj
∆ ∂Q

∂γi

)

+

(

0 B∆U
U t∆Bt Qt∆U + U t∆Q

)

−

(

B
Qt

)

∆
(

∂P
∂γi
∆ ∂P

∂γj
+ ∂P

∂γj
∆ ∂P

∂γi

)

∆
(

Bt Q
)

(21)
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where

U =
∂P

∂γi
∆
∂Q

∂γj
+
∂P

∂γj
∆
∂Q

∂γi
−

∂2Q

∂γi∂γj
(22)

If ΛΣ is from a network with no interior nodes, or ΛΣ = γΛ0, then
∂2ΛΣ
∂γi∂γj

= 0,

and the previous two equations reduce to

∂(ΛΩ1−Σ ◦ ΛΣ)

∂γi∂γj
= 0 (23)

and

∂2(ΛΩ1−Σ • ΛΣ)

∂γi∂γj
=

(

0 0

0 −∂Qt

∂γi
∆ ∂Q

∂γj
− ∂Qt

∂γj
∆ ∂Q

∂γi

)

+

(

0 B∆V
Bt∆V t Qt∆V + V t∆Q

)

−

(

B
Qt

)

∆
(

∂P
∂γi
∆ ∂P

∂γj
+ ∂P

∂γj
∆ ∂P

∂γi

)

∆
(

Bt Q
)

(24)

where

V =
∂P

∂γi
∆
∂Q

∂γj
+
∂P

∂γj
∆
∂Q

∂γi
(25)

With the first- and second-order derivatives of Λ at hand, there is a way
to determine approximate values for the γ’s in the network from Λ. Recall
Taylor’s theorem in several variables, as applied to Λ:

Λ(γ + γ0) = Λ(γ0) +
∑

i

γi
∂Λ(γ0)

∂γi
+ o(|γ|2) (26)

the absolute error being less than some constant times the maximum value
of the second derivatives ∂2Λ

∂γi∂γj
evaluated on the set S = {µ : |µ| < |γ|}.

This can be viewed as a system of equations linear in γ, with a bounded
error term for each equation. One should be able to obtain bounds for the
possible values of γ from this, for any kind of network. Another idea would
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be a Newton’s Method approach, using equation (26) as a local linearization
of the map taking γ’s to Λ. Start with some γ0 and compute the derivatives
at that point. Use a least-squares method to solve for γ = γ1. At this
new γ1, compute the derivatives and solve for γ again. If an iteration of
these steps converges, we will have solved the inverse problem (at least in a
computational sense).
A short table of ∂Λ

∂γi
is included here. The computations were done by

taking the network ΓΣ to be a single conductor. In the third case, we have
used the following lemma to simplify things:

Lemma 12 Let A be a symmetric 2 by 2 matrix. Then

A−1 =
TAT t

detA
=
T tAT

detA
,

where T =

(

0 1
−1 0

)

, and T 2 = I.

Proof. Let A =

(

a b
b c

)

. It is well-known that A−1 = 1
detA

(

c −b
−b a

)

.

Matrix multiplication shows immediately that TA−1T t =

(

c −b
−b a

)

. T t =

−T , so TAT t = T tAT .
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Configuration Derivative

1 c c2 ∂Λ
∂γ
=







0 0

0

(

1 −1
−1 1

)







s c1 2 ∂Λ
∂γ
= 1

(c+γ)2

(

BBt cB
cBt c2

)

s s1 2
∂Λ
∂γ
=

B

(

0 1
−1 0

)

C

(

1 1
1 1

)

Ct

(

0 −1
1 0

)

Bt

det2

[

C+γ

(

1 −1
−1 1

)
]

7 A General Approach To The Inverse Prob-

lem

In the inverse problem, we are attempting to find the γ’s for the conductors of
network from information in Λ. Ideas about how to approach this problem
come from a modification of the construction theorem. For the moment
consider networks with no interior nodes. One can virtually read off the γ’s
from Λ for this type of network, because if we apply a positive potential to a
single boundary node, and zero potential at all others, the currents leaving
the nodes at zero potential are precisely the currents through the conductor
connected between that node and the node at positive potential. A simple
application of Ohm’s Law then gives γ. By the same token, constructing Λ
for these networks is just as easy; for a network with n boundary nodes and
conductances γij = γji between nodes pi and pj, the Λ is

Λ =















∑

i6=1 γ1i −γ12 · · · −γ1n

−γ21
∑

i6=2 γ2i
...

...
. . .

...
−γn1 · · · · · ·

∑

i6=n γni















(27)
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A straightforward approach to constructing Λ for networks would be to first
write Λi for constituent networks with no interior nodes, and then connect
these larger pieces together with the operations ◦k and •k.
At this point, the method of solution is clear: Decompose the network

into subnetworks, where by themselves, these subnetworks are of the special
type just mentioned. Given a Λ, we would have something similar to

Λ = Λ1 ◦k1 Λ2 •k2 Λ3 ◦k3 · · · •kn
Λn, (28)

where the individual Λi’s are unknown. We would like to invert the operations
◦k and •k, so that if we can solve for the last Λ in equation (29), we can
essentially “break it off”. Piece by piece, we will have decomposed Λ into
the Λi’s for the subnetworks, where each individual γ is plain to see.
The jumping-off point for this approach is the pair of equations (12) and

(14). The two questions we ask are:
Given Λ and Λ(2), and knowing that Λ = Λ(1) ◦kΛ

(2), can we find Λ(1)?
and
Given Λ and Λ(2), and knowing that Λ = Λ(1) •kΛ

(2), can we find Λ(1)?
Looking at equation (12), the answer to the first question is obvious. If

we know the dimensions of all the matrices and their subblocks (which we
should, since we know the geometry of the situation and consequently the
number of boundary nodes involved), as well as the matrices P , Q, and R, we
can simply subtract off those matrices and read off the remaining A, B, and
C . The situation is not quite as easy for •k. There are situations where the
resultant Λ = Λ(1) •kΛ

(2) is not unique. If we make some assumptions about
Λ(2), we can narrow this down to the cases where we do have uniqueness.

Theorem 2 Let Λ =

(

X Y
Y t Z

)

= Λ(1) •kΛ
(2), and let Λ(2) =

(

P Q
Qt R

)

.

If the submatrix Qt is nonsingular, Λ(1) may be solved for.

Proof. First, we construct a special matrix. Let Q be the matrix of columns
qi . . . qn. Choose the numbers τ(1) . . . τ(m) such that the square matrix Q̃
with columns qτ(1) . . . qτ(m) is invertible. Let q̃

−1
j be the jth row of Q̃−1. Take

Q∗ to be the matrix of the same size as Qt, where the rows of q∗i of Q
∗ are

q∗τ(i) = q̃−1i , and q
∗
i = 0 for all other rows. Then QQ

∗ = Q̃Q̃−1 = I, where I
has the same size as ∆.
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Now, we proceed block-by-block. We know the matrices P, Q, R, X, Y
and Z. Z = R−Qt∆Q, so ∆ = −(Q∗)t(R− Z)Q∗. ∆ = (C + P )−1, and by
construction ∆ is invertible. Thus we have solved for C:

C = (−(Q∗)t(R− Z)Q∗)−1 − P (29)

The other two blocks are much simpler. We from Y = −B∆Q that

B = −Y Q∗∆−1. (30)

Finally, X = A−B∆Bt gives

A = X +B∆Bt = X + Y Q∗∆−1(Q∗)tY t. (31)

If the submatrix Qt is singular, there are many solutions to the equation.
Starting from the equation Qt∆Q = R− Z, we may calculate some possible
values for ∆, and from those some possible matrices A, B and C that satisfy
equation (15). Apply elementary row operations to Qt on the left until Qt is
in row-echelon form. Letting K t be the product of those operations, K tQt =
(

I M
)

. We break ∆ up into pieces ∆ij so that

KtQt∆QK =
(

I M
)

(

∆11 ∆12
∆21 ∆22

)(

I
M t

)

. (32)

Expanding this out, we solve for ∆11 as a variable dependent on the other
∆ij’s:

∆11 = Kt(R− Z)K −∆12M −M t∆21 −M t∆22M. (33)

Everything already said in this section could just as well be applied to
finite blocks, though with blocks perhaps it is easier to follow this process
by “subtracting” only one block at a time. In either case, what we are
ultimately looking for are certain conditions on the boundary nodes or faces
such that we may know all the potentials around some subnetwork or block.
Application of Ohm’s law will then give the solution. The vital questions left
are:

For which network (or configuration) geometries do there exist special
boundary functions that allow us to solve for each Λi, step by step?
and
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For which network (or configuration) geometries is the solution of the
inverse problem unique?
Research on these problems was found to be particularly difficult, and no

results are included here, though the answers are known for certain specific
geometries.

8 Conclusion

This paper brings to light many structures applicable to a whole variety of
specific problems regarding conductive networks and configurations. A prob-
lem I found quite intriguing was the following: Let Λ be a Dirichlet-Neumann
map with rational entries. Find an algorithm that gives a network for Ω such
that Λ = ΛΩ, where ΛΩ is the map for the network Ω with conductivities
γ = 1 on all the edges. This problem is quite different than other problems
previously studied in the REU program. Personally, I think more research
ought to be done on this geometric level, especially since, as was remarked
at the end of the previous section, this would give complete solutions to the
inverse problem for any geometry of network or configuration.
Having closed-form expressions for the derivatives of Λ also opens up new

avenues of research. Studies of the manifold MΛ = {Λ(γ)|γi ∈ C
+} suggest

that this manifold may have interesting properties, presumably due to the
solvability of the inverse problem or perhaps other conditions that come up
during construction of Λ. It may be that requirements on its curvature can
tell us what sort of convergence we hope to get from the Newton’s Method
approach described in §6. For geometries with nonunique solutions, can the
sets {γ = (γ1 . . . γn)|Λ(γ) = Λ0} be described readily? Symmetries of the
manifold related to the geometry of the network might be interesting.
This summer, some research was done on “mixed problems”, where po-

tentials were allowed on some of the boundary nodes, and currents on the oth-
ers. Instead of Λ, we would have a mixed map of both Dirichlet-to-Neumann
and Neumann-to-Dirichlet data. It may be the case that a constructional
approach similar to the one given here could be applied. The same classifi-
cations of solvable inverse geometries could be studied, and more practical
applications might be sought.
There is a continuous case of blocks also. In this case, γ is a function

whose range has positive real part, defined on some region such that potential
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φ on the boundary induces a potential u inside the region satisfying the
equation

∇ · (γ∇u) = 0. (34)

The currents on the boundary are the normal derivatives ∂u
∂n

. The map Λ
again takes boundary potentials to boundary currents, but in the continuous
case the representation of Λ is not simple. By linearity of Λ, if we partition
the boundary of the region into n faces, we can think of Λ as an n by n
matrix of Λ-operators Λij, where a given Λij gives the current function on
the ith face due to a potential φj on the jth face. Taking φ to be an n-vector
of functions φi, we again have Λφ = Iφ(F). I have put a moderate amount
of thought into this approach, but there appear to be some fundamental
departures from the finite situation. The work in this area is very difficult,
but perhaps this paper will provide some motivation.
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